Metamath Proof Explorer


Theorem caonncan

Description: Transfer nncan -shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses caonncan.i φIV
caonncan.a φA:IS
caonncan.b φB:IS
caonncan.z φxSySxMxMy=y
Assertion caonncan φAMfAMfB=B

Proof

Step Hyp Ref Expression
1 caonncan.i φIV
2 caonncan.a φA:IS
3 caonncan.b φB:IS
4 caonncan.z φxSySxMxMy=y
5 2 ffvelcdmda φzIAzS
6 3 ffvelcdmda φzIBzS
7 4 ralrimivva φxSySxMxMy=y
8 7 adantr φzIxSySxMxMy=y
9 id x=Azx=Az
10 oveq1 x=AzxMy=AzMy
11 9 10 oveq12d x=AzxMxMy=AzMAzMy
12 11 eqeq1d x=AzxMxMy=yAzMAzMy=y
13 oveq2 y=BzAzMy=AzMBz
14 13 oveq2d y=BzAzMAzMy=AzMAzMBz
15 id y=Bzy=Bz
16 14 15 eqeq12d y=BzAzMAzMy=yAzMAzMBz=Bz
17 12 16 rspc2va AzSBzSxSySxMxMy=yAzMAzMBz=Bz
18 5 6 8 17 syl21anc φzIAzMAzMBz=Bz
19 18 mpteq2dva φzIAzMAzMBz=zIBz
20 fvexd φzIAzV
21 ovexd φzIAzMBzV
22 2 feqmptd φA=zIAz
23 fvexd φzIBzV
24 3 feqmptd φB=zIBz
25 1 20 23 22 24 offval2 φAMfB=zIAzMBz
26 1 20 21 22 25 offval2 φAMfAMfB=zIAzMAzMBz
27 19 26 24 3eqtr4d φAMfAMfB=B