Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caragenunicl.o | |
|
caragenunicl.s | |
||
caragenunicl.y | |
||
caragenunicl.ctb | |
||
Assertion | caragenunicl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenunicl.o | |
|
2 | caragenunicl.s | |
|
3 | caragenunicl.y | |
|
4 | caragenunicl.ctb | |
|
5 | unieq | |
|
6 | uni0 | |
|
7 | 5 6 | eqtrdi | |
8 | 7 | adantl | |
9 | 1 2 | caragen0 | |
10 | 9 | adantr | |
11 | 8 10 | eqeltrd | |
12 | simpl | |
|
13 | neqne | |
|
14 | 13 | adantl | |
15 | simpr | |
|
16 | reldom | |
|
17 | brrelex1 | |
|
18 | 16 17 | mpan | |
19 | 4 18 | syl | |
20 | 19 | adantr | |
21 | 0sdomg | |
|
22 | 20 21 | syl | |
23 | 15 22 | mpbird | |
24 | nnenom | |
|
25 | 24 | ensymi | |
26 | 25 | a1i | |
27 | domentr | |
|
28 | 4 26 27 | syl2anc | |
29 | 28 | adantr | |
30 | fodomr | |
|
31 | 23 29 30 | syl2anc | |
32 | founiiun | |
|
33 | 32 | adantl | |
34 | 1 | adantr | |
35 | 1zzd | |
|
36 | nnuz | |
|
37 | fof | |
|
38 | 37 | adantl | |
39 | 3 | adantr | |
40 | 38 39 | fssd | |
41 | 34 2 35 36 40 | carageniuncl | |
42 | 33 41 | eqeltrd | |
43 | 42 | ex | |
44 | 43 | adantr | |
45 | 44 | exlimdv | |
46 | 31 45 | mpd | |
47 | 12 14 46 | syl2anc | |
48 | 11 47 | pm2.61dan | |