Metamath Proof Explorer


Theorem caragenunicl

Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenunicl.o φOOutMeas
caragenunicl.s S=CaraGenO
caragenunicl.y φXS
caragenunicl.ctb φXω
Assertion caragenunicl φXS

Proof

Step Hyp Ref Expression
1 caragenunicl.o φOOutMeas
2 caragenunicl.s S=CaraGenO
3 caragenunicl.y φXS
4 caragenunicl.ctb φXω
5 unieq X=X=
6 uni0 =
7 5 6 eqtrdi X=X=
8 7 adantl φX=X=
9 1 2 caragen0 φS
10 9 adantr φX=S
11 8 10 eqeltrd φX=XS
12 simpl φ¬X=φ
13 neqne ¬X=X
14 13 adantl φ¬X=X
15 simpr φXX
16 reldom Rel
17 brrelex1 RelXωXV
18 16 17 mpan XωXV
19 4 18 syl φXV
20 19 adantr φXXV
21 0sdomg XVXX
22 20 21 syl φXXX
23 15 22 mpbird φXX
24 nnenom ω
25 24 ensymi ω
26 25 a1i φω
27 domentr XωωX
28 4 26 27 syl2anc φX
29 28 adantr φXX
30 fodomr XXff:ontoX
31 23 29 30 syl2anc φXff:ontoX
32 founiiun f:ontoXX=nfn
33 32 adantl φf:ontoXX=nfn
34 1 adantr φf:ontoXOOutMeas
35 1zzd φf:ontoX1
36 nnuz =1
37 fof f:ontoXf:X
38 37 adantl φf:ontoXf:X
39 3 adantr φf:ontoXXS
40 38 39 fssd φf:ontoXf:S
41 34 2 35 36 40 carageniuncl φf:ontoXnfnS
42 33 41 eqeltrd φf:ontoXXS
43 42 ex φf:ontoXXS
44 43 adantr φXf:ontoXXS
45 44 exlimdv φXff:ontoXXS
46 31 45 mpd φXXS
47 12 14 46 syl2anc φ¬X=XS
48 11 47 pm2.61dan φXS