Metamath Proof Explorer


Theorem cdj3lem2

Description: Lemma for cdj3i . Value of the first-component function S . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 A S
cdj3lem2.2 B S
cdj3lem2.3 S = x A + B ι z A | w B x = z + w
Assertion cdj3lem2 C A D B A B = 0 S C + D = C

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 A S
2 cdj3lem2.2 B S
3 cdj3lem2.3 S = x A + B ι z A | w B x = z + w
4 1 2 shsvai C A D B C + D A + B
5 eqeq1 x = C + D x = z + w C + D = z + w
6 5 rexbidv x = C + D w B x = z + w w B C + D = z + w
7 6 riotabidv x = C + D ι z A | w B x = z + w = ι z A | w B C + D = z + w
8 riotaex ι z A | w B C + D = z + w V
9 7 3 8 fvmpt C + D A + B S C + D = ι z A | w B C + D = z + w
10 4 9 syl C A D B S C + D = ι z A | w B C + D = z + w
11 10 3adant3 C A D B A B = 0 S C + D = ι z A | w B C + D = z + w
12 eqid C + D = C + D
13 oveq2 w = D C + w = C + D
14 13 rspceeqv D B C + D = C + D w B C + D = C + w
15 12 14 mpan2 D B w B C + D = C + w
16 15 3ad2ant2 C A D B A B = 0 w B C + D = C + w
17 simp1 C A D B A B = 0 C A
18 1 2 cdjreui C + D A + B A B = 0 ∃! z A w B C + D = z + w
19 4 18 stoic3 C A D B A B = 0 ∃! z A w B C + D = z + w
20 oveq1 z = C z + w = C + w
21 20 eqeq2d z = C C + D = z + w C + D = C + w
22 21 rexbidv z = C w B C + D = z + w w B C + D = C + w
23 22 riota2 C A ∃! z A w B C + D = z + w w B C + D = C + w ι z A | w B C + D = z + w = C
24 17 19 23 syl2anc C A D B A B = 0 w B C + D = C + w ι z A | w B C + D = z + w = C
25 16 24 mpbid C A D B A B = 0 ι z A | w B C + D = z + w = C
26 11 25 eqtrd C A D B A B = 0 S C + D = C