Metamath Proof Explorer


Theorem cdlema1N

Description: A condition for required for proof of Lemma A in Crawley p. 112. (Contributed by NM, 29-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdlema1.b B=BaseK
cdlema1.l ˙=K
cdlema1.j ˙=joinK
cdlema1.m ˙=meetK
cdlema1.a A=AtomsK
cdlema1.n N=LinesK
cdlema1.f F=pmapK
Assertion cdlema1N KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙R=X˙Y

Proof

Step Hyp Ref Expression
1 cdlema1.b B=BaseK
2 cdlema1.l ˙=K
3 cdlema1.j ˙=joinK
4 cdlema1.m ˙=meetK
5 cdlema1.a A=AtomsK
6 cdlema1.n N=LinesK
7 cdlema1.f F=pmapK
8 simp11 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XKHL
9 8 hllatd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XKLat
10 simp12 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XXB
11 simp23 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XRA
12 1 5 atbase RARB
13 11 12 syl KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XRB
14 1 3 latjcl KLatXBRBX˙RB
15 9 10 13 14 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙RB
16 simp13 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XYB
17 1 3 latjcl KLatXBYBX˙YB
18 9 10 16 17 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙YB
19 1 2 3 latlej1 KLatXBYBX˙X˙Y
20 9 10 16 19 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙X˙Y
21 simp21 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XPA
22 1 5 atbase PAPB
23 21 22 syl KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XPB
24 simp22 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQA
25 1 5 atbase QAQB
26 24 25 syl KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQB
27 1 3 latjcl KLatPBQBP˙QB
28 9 23 26 27 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙QB
29 simp31r KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XR˙P˙Q
30 simp32l KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙X
31 simp32r KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ˙Y
32 1 2 3 latjlej12 KLatPBXBQBYBP˙XQ˙YP˙Q˙X˙Y
33 9 23 10 26 16 32 syl122anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙XQ˙YP˙Q˙X˙Y
34 30 31 33 mp2and KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙Q˙X˙Y
35 1 2 9 13 28 18 29 34 lattrd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XR˙X˙Y
36 1 2 3 latjle12 KLatXBRBX˙YBX˙X˙YR˙X˙YX˙R˙X˙Y
37 9 10 13 18 36 syl13anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙X˙YR˙X˙YX˙R˙X˙Y
38 20 35 37 mpbi2and KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙R˙X˙Y
39 1 2 3 latlej1 KLatXBRBX˙X˙R
40 9 10 13 39 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙X˙R
41 simp331 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XFYN
42 simp332 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙YA
43 simp333 KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙X¬Q˙X
44 1 2 4 latmle1 KLatXBYBX˙Y˙X
45 9 10 16 44 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙Y˙X
46 breq1 Q=X˙YQ˙XX˙Y˙X
47 45 46 syl5ibrcom KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ=X˙YQ˙X
48 47 necon3bd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙X¬Q˙XQX˙Y
49 43 48 mpd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQX˙Y
50 1 2 4 latmle2 KLatXBYBX˙Y˙Y
51 9 10 16 50 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙Y˙Y
52 1 2 3 5 6 7 lneq2at KHLYBFYNQAX˙YAQX˙YQ˙YX˙Y˙YY=Q˙X˙Y
53 8 16 41 24 42 49 31 51 52 syl332anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XY=Q˙X˙Y
54 1 3 latjcl KLatPBRBP˙RB
55 9 23 13 54 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙RB
56 11 24 21 3jca KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XRAQAPA
57 simp31l KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XRP
58 8 56 57 3jca KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XKHLRAQAPARP
59 2 3 5 hlatexch1 KHLRAQAPARPR˙P˙QQ˙P˙R
60 58 29 59 sylc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ˙P˙R
61 23 10 13 3jca KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XPBXBRB
62 9 61 jca KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XKLatPBXBRB
63 1 2 3 latjlej1 KLatPBXBRBP˙XP˙R˙X˙R
64 62 30 63 sylc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XP˙R˙X˙R
65 1 2 9 26 55 15 60 64 lattrd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ˙X˙R
66 1 2 3 4 latmlej11 KLatXBYBRBX˙Y˙X˙R
67 9 10 16 13 66 syl13anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙Y˙X˙R
68 1 4 latmcl KLatXBYBX˙YB
69 9 10 16 68 syl3anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙YB
70 1 2 3 latjle12 KLatQBX˙YBX˙RBQ˙X˙RX˙Y˙X˙RQ˙X˙Y˙X˙R
71 9 26 69 15 70 syl13anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ˙X˙RX˙Y˙X˙RQ˙X˙Y˙X˙R
72 65 67 71 mpbi2and KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XQ˙X˙Y˙X˙R
73 53 72 eqbrtrd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XY˙X˙R
74 1 2 3 latjle12 KLatXBYBX˙RBX˙X˙RY˙X˙RX˙Y˙X˙R
75 9 10 16 15 74 syl13anc KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙X˙RY˙X˙RX˙Y˙X˙R
76 40 73 75 mpbi2and KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙Y˙X˙R
77 1 2 9 15 18 38 76 latasymd KHLXBYBPAQARARPR˙P˙QP˙XQ˙YFYNX˙YA¬Q˙XX˙R=X˙Y