Metamath Proof Explorer


Theorem cdlemblem

Description: Lemma for cdlemb . (Contributed by NM, 8-May-2012)

Ref Expression
Hypotheses cdlemb.b B=BaseK
cdlemb.l ˙=K
cdlemb.j ˙=joinK
cdlemb.u 1˙=1.K
cdlemb.c C=K
cdlemb.a A=AtomsK
cdlemblem.s <˙=<K
cdlemblem.m ˙=meetK
cdlemblem.v V=P˙Q˙X
Assertion cdlemblem KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙u¬r˙X¬r˙P˙Q

Proof

Step Hyp Ref Expression
1 cdlemb.b B=BaseK
2 cdlemb.l ˙=K
3 cdlemb.j ˙=joinK
4 cdlemb.u 1˙=1.K
5 cdlemb.c C=K
6 cdlemb.a A=AtomsK
7 cdlemblem.s <˙=<K
8 cdlemblem.m ˙=meetK
9 cdlemblem.v V=P˙Q˙X
10 simp132 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙u¬P˙X
11 simp111 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKHL
12 simp2l KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uuA
13 simp12l KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uXB
14 11 12 13 3jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKHLuAXB
15 simp2rr KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu<˙X
16 2 7 pltle KHLuAXBu<˙Xu˙X
17 14 15 16 sylc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu˙X
18 11 hllatd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKLat
19 simp3l KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙urA
20 1 6 atbase rArB
21 19 20 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙urB
22 1 6 atbase uAuB
23 12 22 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uuB
24 1 2 3 latjle12 KLatrBuBXBr˙Xu˙Xr˙u˙X
25 18 21 23 13 24 syl13anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙Xu˙Xr˙u˙X
26 25 biimpd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙Xu˙Xr˙u˙X
27 17 26 mpan2d KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙Xr˙u˙X
28 simp112 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uPA
29 19 28 12 3jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙urAPAuA
30 simp3r2 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uru
31 11 29 30 3jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKHLrAPAuAru
32 simp3r3 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙u
33 2 3 6 hlatexch2 KHLrAPAuArur˙P˙uP˙r˙u
34 31 32 33 sylc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uP˙r˙u
35 1 6 atbase PAPB
36 28 35 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uPB
37 1 3 latjcl KLatrBuBr˙uB
38 18 21 23 37 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙uB
39 1 2 lattr KLatPBr˙uBXBP˙r˙ur˙u˙XP˙X
40 18 36 38 13 39 syl13anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uP˙r˙ur˙u˙XP˙X
41 34 40 mpand KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙u˙XP˙X
42 27 41 syld KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙XP˙X
43 10 42 mtod KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙u¬r˙X
44 simp2rl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uuV
45 simp113 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uQA
46 simp3r1 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙urP
47 2 3 6 hlatexchb1 KHLrAQAPArPr˙P˙QP˙r=P˙Q
48 11 19 45 28 46 47 syl131anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙QP˙r=P˙Q
49 19 12 28 3jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙urAuAPA
50 11 49 46 3jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKHLrAuAPArP
51 2 3 6 hlatexch1 KHLrAuAPArPr˙P˙uu˙P˙r
52 50 32 51 sylc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu˙P˙r
53 breq2 P˙r=P˙Qu˙P˙ru˙P˙Q
54 52 53 syl5ibcom KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uP˙r=P˙Qu˙P˙Q
55 48 54 sylbid KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙Qu˙P˙Q
56 55 17 jctird KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙Qu˙P˙Qu˙X
57 1 6 atbase QAQB
58 45 57 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uQB
59 1 3 latjcl KLatPBQBP˙QB
60 18 36 58 59 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uP˙QB
61 1 2 8 latlem12 KLatuBP˙QBXBu˙P˙Qu˙Xu˙P˙Q˙X
62 18 23 60 13 61 syl13anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu˙P˙Qu˙Xu˙P˙Q˙X
63 9 breq2i u˙Vu˙P˙Q˙X
64 62 63 bitr4di KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu˙P˙Qu˙Xu˙V
65 56 64 sylibd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙Qu˙V
66 hlatl KHLKAtLat
67 11 66 syl KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uKAtLat
68 simp12r KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uPQ
69 simp131 KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uXC1˙
70 1 2 3 8 4 5 6 1cvrat KHLPAQAXBPQXC1˙¬P˙XP˙Q˙XA
71 11 28 45 13 68 69 10 70 syl133anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uP˙Q˙XA
72 9 71 eqeltrid KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uVA
73 2 6 atcmp KAtLatuAVAu˙Vu=V
74 67 12 72 73 syl3anc KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uu˙Vu=V
75 65 74 sylibd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙ur˙P˙Qu=V
76 75 necon3ad KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙uuV¬r˙P˙Q
77 44 76 mpd KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙u¬r˙P˙Q
78 43 77 jca KHLPAQAXBPQXC1˙¬P˙X¬Q˙XuAuVu<˙XrArPrur˙P˙u¬r˙X¬r˙P˙Q