Metamath Proof Explorer


Theorem cdleme0cq

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0cq KHLWHPAQA¬Q˙WQ˙U=P˙Q

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 6 oveq2i Q˙U=Q˙P˙Q˙W
8 simpll KHLWHPAQA¬Q˙WKHL
9 simprrl KHLWHPAQA¬Q˙WQA
10 hllat KHLKLat
11 10 ad2antrr KHLWHPAQA¬Q˙WKLat
12 eqid BaseK=BaseK
13 12 4 atbase PAPBaseK
14 13 ad2antrl KHLWHPAQA¬Q˙WPBaseK
15 12 4 atbase QAQBaseK
16 9 15 syl KHLWHPAQA¬Q˙WQBaseK
17 12 2 latjcl KLatPBaseKQBaseKP˙QBaseK
18 11 14 16 17 syl3anc KHLWHPAQA¬Q˙WP˙QBaseK
19 12 5 lhpbase WHWBaseK
20 19 ad2antlr KHLWHPAQA¬Q˙WWBaseK
21 12 1 2 latlej2 KLatPBaseKQBaseKQ˙P˙Q
22 11 14 16 21 syl3anc KHLWHPAQA¬Q˙WQ˙P˙Q
23 12 1 2 3 4 atmod3i1 KHLQAP˙QBaseKWBaseKQ˙P˙QQ˙P˙Q˙W=P˙Q˙Q˙W
24 8 9 18 20 22 23 syl131anc KHLWHPAQA¬Q˙WQ˙P˙Q˙W=P˙Q˙Q˙W
25 eqid 1.K=1.K
26 1 2 25 4 5 lhpjat2 KHLWHQA¬Q˙WQ˙W=1.K
27 26 adantrl KHLWHPAQA¬Q˙WQ˙W=1.K
28 27 oveq2d KHLWHPAQA¬Q˙WP˙Q˙Q˙W=P˙Q˙1.K
29 hlol KHLKOL
30 29 ad2antrr KHLWHPAQA¬Q˙WKOL
31 12 3 25 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
32 30 18 31 syl2anc KHLWHPAQA¬Q˙WP˙Q˙1.K=P˙Q
33 24 28 32 3eqtrd KHLWHPAQA¬Q˙WQ˙P˙Q˙W=P˙Q
34 7 33 eqtrid KHLWHPAQA¬Q˙WQ˙U=P˙Q