Metamath Proof Explorer


Theorem cdleme0ex1N

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0ex1N KHLWHPA¬P˙WQAPQuAu˙P˙Qu˙W

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simp1 KHLWHPA¬P˙WQAPQKHLWH
8 simp2l KHLWHPA¬P˙WQAPQPA¬P˙W
9 simp2r KHLWHPA¬P˙WQAPQQA
10 simp3 KHLWHPA¬P˙WQAPQPQ
11 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
12 7 8 9 10 11 syl112anc KHLWHPA¬P˙WQAPQUA
13 simp2ll KHLWHPA¬P˙WQAPQPA
14 1 2 3 4 5 6 cdlemeulpq KHLWHPAQAU˙P˙Q
15 7 13 9 14 syl12anc KHLWHPA¬P˙WQAPQU˙P˙Q
16 simp1l KHLWHPA¬P˙WQAPQKHL
17 16 hllatd KHLWHPA¬P˙WQAPQKLat
18 eqid BaseK=BaseK
19 18 2 4 hlatjcl KHLPAQAP˙QBaseK
20 16 13 9 19 syl3anc KHLWHPA¬P˙WQAPQP˙QBaseK
21 simp1r KHLWHPA¬P˙WQAPQWH
22 18 5 lhpbase WHWBaseK
23 21 22 syl KHLWHPA¬P˙WQAPQWBaseK
24 18 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
25 17 20 23 24 syl3anc KHLWHPA¬P˙WQAPQP˙Q˙W˙W
26 6 25 eqbrtrid KHLWHPA¬P˙WQAPQU˙W
27 breq1 u=Uu˙P˙QU˙P˙Q
28 breq1 u=Uu˙WU˙W
29 27 28 anbi12d u=Uu˙P˙Qu˙WU˙P˙QU˙W
30 29 rspcev UAU˙P˙QU˙WuAu˙P˙Qu˙W
31 12 15 26 30 syl12anc KHLWHPA¬P˙WQAPQuAu˙P˙Qu˙W