Metamath Proof Explorer


Theorem cdleme15

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, (s \/ t) /\ (f(s) \/ f(t)) <_ w. We use F , G for f(s), f(t) respectively. (Contributed by NM, 10-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme15 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙W

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 eqid BaseK=BaseK
10 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKLat
12 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA
13 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA
14 9 2 4 hlatjcl KHLSATAS˙TBaseK
15 10 12 13 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙TBaseK
16 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWH
17 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA
18 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQA
19 1 2 3 4 5 6 7 9 cdleme1b KHLWHPAQASAFBaseK
20 10 16 17 18 12 19 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TFBaseK
21 1 2 3 4 5 6 8 9 cdleme1b KHLWHPAQATAGBaseK
22 10 16 17 18 13 21 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TGBaseK
23 9 2 latjcl KLatFBaseKGBaseKF˙GBaseK
24 11 20 22 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TF˙GBaseK
25 9 3 latmcl KLatS˙TBaseKF˙GBaseKS˙T˙F˙GBaseK
26 11 15 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙GBaseK
27 9 2 4 hlatjcl KHLTAPAT˙PBaseK
28 10 13 17 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙PBaseK
29 9 4 atbase QAQBaseK
30 18 29 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQBaseK
31 9 2 latjcl KLatGBaseKQBaseKG˙QBaseK
32 11 22 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TG˙QBaseK
33 9 3 latmcl KLatT˙PBaseKG˙QBaseKT˙P˙G˙QBaseK
34 11 28 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙P˙G˙QBaseK
35 9 2 4 hlatjcl KHLPASAP˙SBaseK
36 10 17 12 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙SBaseK
37 9 2 latjcl KLatQBaseKFBaseKQ˙FBaseK
38 11 30 20 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQ˙FBaseK
39 9 3 latmcl KLatP˙SBaseKQ˙FBaseKP˙S˙Q˙FBaseK
40 11 36 38 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙S˙Q˙FBaseK
41 9 2 latjcl KLatT˙P˙G˙QBaseKP˙S˙Q˙FBaseKT˙P˙G˙Q˙P˙S˙Q˙FBaseK
42 11 34 40 41 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙P˙G˙Q˙P˙S˙Q˙FBaseK
43 9 5 lhpbase WHWBaseK
44 16 43 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWBaseK
45 1 2 3 4 5 6 7 8 cdleme14 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙T˙P˙G˙Q˙P˙S˙Q˙F
46 eqid P˙S˙W=P˙S˙W
47 eqid P˙T˙W=P˙T˙W
48 1 2 3 4 5 6 7 8 46 47 cdleme15a KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙P˙G˙Q˙P˙S˙Q˙F=P˙P˙T˙W˙Q˙P˙T˙W˙P˙P˙S˙W˙Q˙P˙S˙W
49 1 2 3 4 5 6 7 8 46 47 cdleme15c KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙P˙T˙W˙Q˙P˙T˙W˙P˙P˙S˙W˙Q˙P˙S˙W=P˙T˙W˙P˙S˙W
50 48 49 eqtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙P˙G˙Q˙P˙S˙Q˙F=P˙T˙W˙P˙S˙W
51 1 2 3 4 5 6 7 8 46 47 cdleme15d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙T˙W˙P˙S˙W˙W
52 50 51 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TT˙P˙G˙Q˙P˙S˙Q˙F˙W
53 9 1 11 26 42 44 45 52 lattrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙W