Metamath Proof Explorer


Theorem cdleme18d

Description: Part of proof of Lemma E in Crawley p. 114, 4th sentence of 4th paragraph. F , G , D , E represent f(s), f_s(r), f(t), f_t(r) respectively. We show f_s(r) = f_t(r) for all possible r (which must equal p or q in the case of exactly 3 atoms in p \/ q/0 , i.e., when -. E. r e. A ... ). (Contributed by NM, 12-Nov-2012)

Ref Expression
Hypotheses cdleme18d.l ˙=K
cdleme18d.j ˙=joinK
cdleme18d.m ˙=meetK
cdleme18d.a A=AtomsK
cdleme18d.h H=LHypK
cdleme18d.u U=P˙Q˙W
cdleme18d.f F=S˙U˙Q˙P˙S˙W
cdleme18d.g G=P˙Q˙F˙R˙S˙W
cdleme18d.d D=T˙U˙Q˙P˙T˙W
cdleme18d.e E=P˙Q˙D˙R˙T˙W
Assertion cdleme18d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rG=E

Proof

Step Hyp Ref Expression
1 cdleme18d.l ˙=K
2 cdleme18d.j ˙=joinK
3 cdleme18d.m ˙=meetK
4 cdleme18d.a A=AtomsK
5 cdleme18d.h H=LHypK
6 cdleme18d.u U=P˙Q˙W
7 cdleme18d.f F=S˙U˙Q˙P˙S˙W
8 cdleme18d.g G=P˙Q˙F˙R˙S˙W
9 cdleme18d.d D=T˙U˙Q˙P˙T˙W
10 cdleme18d.e E=P˙Q˙D˙R˙T˙W
11 eleq1 R=PRAPA
12 breq1 R=PR˙WP˙W
13 12 notbid R=P¬R˙W¬P˙W
14 11 13 anbi12d R=PRA¬R˙WPA¬P˙W
15 14 3anbi1d R=PRA¬R˙WSA¬S˙WTA¬T˙WPA¬P˙WSA¬S˙WTA¬T˙W
16 15 3anbi2d R=PKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r
17 simp11 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
18 simp21 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
19 simp13l KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rQA
20 simp22 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rSA¬S˙W
21 simp322 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬S˙P˙Q
22 eqid P˙Q˙F˙P˙S˙W=P˙Q˙F˙P˙S˙W
23 1 2 3 4 5 6 7 22 cdleme17d1 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙Q˙F˙P˙S˙W=Q
24 17 18 19 20 21 23 syl131anc KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙P˙S˙W=Q
25 simp23 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rTA¬T˙W
26 simp323 KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬T˙P˙Q
27 eqid P˙Q˙D˙P˙T˙W=P˙Q˙D˙P˙T˙W
28 1 2 3 4 5 6 9 27 cdleme17d1 KHLWHPA¬P˙WQATA¬T˙W¬T˙P˙QP˙Q˙D˙P˙T˙W=Q
29 17 18 19 25 26 28 syl131anc KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙D˙P˙T˙W=Q
30 24 29 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPA¬P˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙P˙S˙W=P˙Q˙D˙P˙T˙W
31 16 30 syl6bi R=PKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙P˙S˙W=P˙Q˙D˙P˙T˙W
32 8 10 eqeq12i G=EP˙Q˙F˙R˙S˙W=P˙Q˙D˙R˙T˙W
33 oveq1 R=PR˙S=P˙S
34 33 oveq1d R=PR˙S˙W=P˙S˙W
35 34 oveq2d R=PF˙R˙S˙W=F˙P˙S˙W
36 35 oveq2d R=PP˙Q˙F˙R˙S˙W=P˙Q˙F˙P˙S˙W
37 oveq1 R=PR˙T=P˙T
38 37 oveq1d R=PR˙T˙W=P˙T˙W
39 38 oveq2d R=PD˙R˙T˙W=D˙P˙T˙W
40 39 oveq2d R=PP˙Q˙D˙R˙T˙W=P˙Q˙D˙P˙T˙W
41 36 40 eqeq12d R=PP˙Q˙F˙R˙S˙W=P˙Q˙D˙R˙T˙WP˙Q˙F˙P˙S˙W=P˙Q˙D˙P˙T˙W
42 32 41 bitrid R=PG=EP˙Q˙F˙P˙S˙W=P˙Q˙D˙P˙T˙W
43 31 42 sylibrd R=PKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rG=E
44 43 com12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rR=PG=E
45 eleq1 R=QRAQA
46 breq1 R=QR˙WQ˙W
47 46 notbid R=Q¬R˙W¬Q˙W
48 45 47 anbi12d R=QRA¬R˙WQA¬Q˙W
49 48 3anbi1d R=QRA¬R˙WSA¬S˙WTA¬T˙WQA¬Q˙WSA¬S˙WTA¬T˙W
50 breq1 R=QR˙P˙QQ˙P˙Q
51 50 3anbi1d R=QR˙P˙Q¬S˙P˙Q¬T˙P˙QQ˙P˙Q¬S˙P˙Q¬T˙P˙Q
52 51 3anbi2d R=QPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r
53 49 52 3anbi23d R=QKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r
54 simp11l KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rKHL
55 simp11r KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rWH
56 simp12 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
57 simp21 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
58 simp22 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rSA¬S˙W
59 simp31 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
60 simp322 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬S˙P˙Q
61 simp33 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
62 eqid P˙Q˙F˙Q˙S˙W=P˙Q˙F˙Q˙S˙W
63 1 2 3 4 5 6 7 62 cdleme18c KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙Q˙S˙W=P
64 54 55 56 57 58 59 60 61 63 syl233anc KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙Q˙S˙W=P
65 simp23 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rTA¬T˙W
66 simp323 KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬T˙P˙Q
67 eqid P˙Q˙D˙Q˙T˙W=P˙Q˙D˙Q˙T˙W
68 1 2 3 4 5 6 9 67 cdleme18c KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙D˙Q˙T˙W=P
69 54 55 56 57 65 59 66 61 68 syl233anc KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙D˙Q˙T˙W=P
70 64 69 eqtr4d KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQQ˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙Q˙S˙W=P˙Q˙D˙Q˙T˙W
71 53 70 syl6bi R=QKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q˙F˙Q˙S˙W=P˙Q˙D˙Q˙T˙W
72 oveq1 R=QR˙S=Q˙S
73 72 oveq1d R=QR˙S˙W=Q˙S˙W
74 73 oveq2d R=QF˙R˙S˙W=F˙Q˙S˙W
75 74 oveq2d R=QP˙Q˙F˙R˙S˙W=P˙Q˙F˙Q˙S˙W
76 oveq1 R=QR˙T=Q˙T
77 76 oveq1d R=QR˙T˙W=Q˙T˙W
78 77 oveq2d R=QD˙R˙T˙W=D˙Q˙T˙W
79 78 oveq2d R=QP˙Q˙D˙R˙T˙W=P˙Q˙D˙Q˙T˙W
80 75 79 eqeq12d R=QP˙Q˙F˙R˙S˙W=P˙Q˙D˙R˙T˙WP˙Q˙F˙Q˙S˙W=P˙Q˙D˙Q˙T˙W
81 32 80 bitrid R=QG=EP˙Q˙F˙Q˙S˙W=P˙Q˙D˙Q˙T˙W
82 71 81 sylibrd R=QKHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rG=E
83 82 com12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rR=QG=E
84 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rKHL
85 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rR˙P˙Q
86 simp33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
87 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPA
88 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rQA
89 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
90 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rRA
91 simp21r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙r¬R˙W
92 1 2 4 cdleme0nex KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WR=PR=Q
93 84 85 86 87 88 89 90 91 92 syl332anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rR=PR=Q
94 44 83 93 mpjaod KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQR˙P˙Q¬S˙P˙Q¬T˙P˙Q¬rA¬r˙WP˙r=Q˙rG=E