Metamath Proof Explorer


Theorem cdleme20aN

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114. D , F , Y , G represent s_2, f(s), t_2, f(t). (Contributed by NM, 14-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
cdleme20.v V = S ˙ T ˙ W
Assertion cdleme20aN K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q V ˙ D = S ˙ R ˙ T ˙ W

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 cdleme20.v V = S ˙ T ˙ W
12 11 oveq1i V ˙ D = S ˙ T ˙ W ˙ D
13 simp1l K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q K HL
14 simp1r K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q W H
15 simp22 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S A
16 simp23 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ W
17 simp21 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R A
18 simp33 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ P ˙ Q
19 simp32 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q
20 1 2 3 4 5 9 cdlemeda K HL W H S A ¬ S ˙ W R A R ˙ P ˙ Q ¬ S ˙ P ˙ Q D A
21 13 14 15 16 17 18 19 20 syl223anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q D A
22 simp31 K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q T A
23 eqid Base K = Base K
24 23 2 4 hlatjcl K HL S A T A S ˙ T Base K
25 13 15 22 24 syl3anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ T Base K
26 23 5 lhpbase W H W Base K
27 14 26 syl K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q W Base K
28 13 hllatd K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q K Lat
29 23 2 4 hlatjcl K HL R A S A R ˙ S Base K
30 13 17 15 29 syl3anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ S Base K
31 23 1 3 latmle2 K Lat R ˙ S Base K W Base K R ˙ S ˙ W ˙ W
32 28 30 27 31 syl3anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ W ˙ W
33 9 32 eqbrtrid K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q D ˙ W
34 23 1 2 3 4 atmod4i1 K HL D A S ˙ T Base K W Base K D ˙ W S ˙ T ˙ W ˙ D = S ˙ T ˙ D ˙ W
35 13 21 25 27 33 34 syl131anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ T ˙ W ˙ D = S ˙ T ˙ D ˙ W
36 1 2 3 4 5 9 cdleme10 K HL W H R A S A ¬ S ˙ W S ˙ D = S ˙ R
37 13 14 17 15 16 36 syl212anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ D = S ˙ R
38 37 oveq1d K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ D ˙ T = S ˙ R ˙ T
39 2 4 hlatj32 K HL S A D A T A S ˙ D ˙ T = S ˙ T ˙ D
40 13 15 21 22 39 syl13anc K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ D ˙ T = S ˙ T ˙ D
41 38 40 eqtr3d K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ R ˙ T = S ˙ T ˙ D
42 41 oveq1d K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ R ˙ T ˙ W = S ˙ T ˙ D ˙ W
43 35 42 eqtr4d K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S ˙ T ˙ W ˙ D = S ˙ R ˙ T ˙ W
44 12 43 eqtrid K HL W H R A S A ¬ S ˙ W T A ¬ S ˙ P ˙ Q R ˙ P ˙ Q V ˙ D = S ˙ R ˙ T ˙ W