Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|
2 |
|
cdleme19.j |
|
3 |
|
cdleme19.m |
|
4 |
|
cdleme19.a |
|
5 |
|
cdleme19.h |
|
6 |
|
cdleme19.u |
|
7 |
|
cdleme19.f |
|
8 |
|
cdleme19.g |
|
9 |
|
cdleme19.d |
|
10 |
|
cdleme19.y |
|
11 |
|
cdleme20.v |
|
12 |
11
|
oveq1i |
|
13 |
|
simp1l |
|
14 |
|
simp1r |
|
15 |
|
simp22 |
|
16 |
|
simp23 |
|
17 |
|
simp21 |
|
18 |
|
simp33 |
|
19 |
|
simp32 |
|
20 |
1 2 3 4 5 9
|
cdlemeda |
|
21 |
13 14 15 16 17 18 19 20
|
syl223anc |
|
22 |
|
simp31 |
|
23 |
|
eqid |
|
24 |
23 2 4
|
hlatjcl |
|
25 |
13 15 22 24
|
syl3anc |
|
26 |
23 5
|
lhpbase |
|
27 |
14 26
|
syl |
|
28 |
13
|
hllatd |
|
29 |
23 2 4
|
hlatjcl |
|
30 |
13 17 15 29
|
syl3anc |
|
31 |
23 1 3
|
latmle2 |
|
32 |
28 30 27 31
|
syl3anc |
|
33 |
9 32
|
eqbrtrid |
|
34 |
23 1 2 3 4
|
atmod4i1 |
|
35 |
13 21 25 27 33 34
|
syl131anc |
|
36 |
1 2 3 4 5 9
|
cdleme10 |
|
37 |
13 14 17 15 16 36
|
syl212anc |
|
38 |
37
|
oveq1d |
|
39 |
2 4
|
hlatj32 |
|
40 |
13 15 21 22 39
|
syl13anc |
|
41 |
38 40
|
eqtr3d |
|
42 |
41
|
oveq1d |
|
43 |
35 42
|
eqtr4d |
|
44 |
12 43
|
eqtrid |
|