| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme35.l |
|
| 2 |
|
cdleme35.j |
|
| 3 |
|
cdleme35.m |
|
| 4 |
|
cdleme35.a |
|
| 5 |
|
cdleme35.h |
|
| 6 |
|
cdleme35.u |
|
| 7 |
|
cdleme35.f |
|
| 8 |
1 2 3 4 5 6 7
|
cdleme35c |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
simp11l |
|
| 11 |
|
simp13l |
|
| 12 |
10
|
hllatd |
|
| 13 |
|
simp12l |
|
| 14 |
|
simp2rl |
|
| 15 |
|
eqid |
|
| 16 |
15 2 4
|
hlatjcl |
|
| 17 |
10 13 14 16
|
syl3anc |
|
| 18 |
|
simp11r |
|
| 19 |
15 5
|
lhpbase |
|
| 20 |
18 19
|
syl |
|
| 21 |
15 3
|
latmcl |
|
| 22 |
12 17 20 21
|
syl3anc |
|
| 23 |
15 1 3
|
latmle2 |
|
| 24 |
12 17 20 23
|
syl3anc |
|
| 25 |
15 1 2 3 4
|
atmod4i2 |
|
| 26 |
10 11 22 20 24 25
|
syl131anc |
|
| 27 |
|
simp11 |
|
| 28 |
|
simp13 |
|
| 29 |
|
eqid |
|
| 30 |
1 3 29 4 5
|
lhpmat |
|
| 31 |
27 28 30
|
syl2anc |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
hlol |
|
| 34 |
10 33
|
syl |
|
| 35 |
15 2 29
|
olj02 |
|
| 36 |
34 22 35
|
syl2anc |
|
| 37 |
32 36
|
eqtrd |
|
| 38 |
9 26 37
|
3eqtr2d |
|