Metamath Proof Explorer


Theorem cdleme36a

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013)

Ref Expression
Hypotheses cdleme36.b B=BaseK
cdleme36.l ˙=K
cdleme36.j ˙=joinK
cdleme36.m ˙=meetK
cdleme36.a A=AtomsK
cdleme36.h H=LHypK
cdleme36.u U=P˙Q˙W
cdleme36.e E=t˙U˙Q˙P˙t˙W
Assertion cdleme36a KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬R˙t˙E

Proof

Step Hyp Ref Expression
1 cdleme36.b B=BaseK
2 cdleme36.l ˙=K
3 cdleme36.j ˙=joinK
4 cdleme36.m ˙=meetK
5 cdleme36.a A=AtomsK
6 cdleme36.h H=LHypK
7 cdleme36.u U=P˙Q˙W
8 cdleme36.e E=t˙U˙Q˙P˙t˙W
9 simp3r KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬t˙P˙Q
10 simp11l KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QKHL
11 simp22l KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QRA
12 simp3ll KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QtA
13 simp11 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QKHLWH
14 simp12 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QPA¬P˙W
15 simp13 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QQA
16 simp21 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QPQ
17 2 3 4 5 6 7 cdleme0a KHLWHPA¬P˙WQAPQUA
18 13 14 15 16 17 syl112anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QUA
19 simp12l KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QPA
20 simp22 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QRA¬R˙W
21 2 3 4 5 6 7 cdleme0c KHLWHPAQARA¬R˙WUR
22 13 19 15 20 21 syl121anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QUR
23 22 necomd KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QRU
24 2 3 5 hlatexch2 KHLRAtAUARUR˙t˙Ut˙R˙U
25 10 11 12 18 23 24 syl131anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QR˙t˙Ut˙R˙U
26 simp3l KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QtA¬t˙W
27 2 3 4 5 6 7 8 cdleme1 KHLWHPAQAtA¬t˙Wt˙E=t˙U
28 13 19 15 26 27 syl13anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Qt˙E=t˙U
29 28 breq2d KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QR˙t˙ER˙t˙U
30 simp23 KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QR˙P˙Q
31 2 3 4 5 6 7 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
32 13 19 15 20 30 31 syl131anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QP˙Q=R˙U
33 32 breq2d KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Qt˙P˙Qt˙R˙U
34 25 29 33 3imtr4d KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QR˙t˙Et˙P˙Q
35 9 34 mtod KHLWHPA¬P˙WQAPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬R˙t˙E