Metamath Proof Explorer


Theorem cdlemefrs29pre00

Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs29.b B=BaseK
cdlemefrs29.l ˙=K
cdlemefrs29.j ˙=joinK
cdlemefrs29.m ˙=meetK
cdlemefrs29.a A=AtomsK
cdlemefrs29.h H=LHypK
cdlemefrs29.eq s=Rφψ
Assertion cdlemefrs29pre00 KHLWHRA¬R˙WψsA¬s˙Wφs˙R˙W=R¬s˙Ws˙R˙W=R

Proof

Step Hyp Ref Expression
1 cdlemefrs29.b B=BaseK
2 cdlemefrs29.l ˙=K
3 cdlemefrs29.j ˙=joinK
4 cdlemefrs29.m ˙=meetK
5 cdlemefrs29.a A=AtomsK
6 cdlemefrs29.h H=LHypK
7 cdlemefrs29.eq s=Rφψ
8 anass ¬s˙Wφs˙R˙W=R¬s˙Wφs˙R˙W=R
9 simpl3 KHLWHRA¬R˙WψsAψ
10 7 pm5.32ri φs=Rψs=R
11 10 baibr ψs=Rφs=R
12 9 11 syl KHLWHRA¬R˙WψsAs=Rφs=R
13 eqid 0.K=0.K
14 2 4 13 5 6 lhpmat KHLWHRA¬R˙WR˙W=0.K
15 14 3adant3 KHLWHRA¬R˙WψR˙W=0.K
16 15 adantr KHLWHRA¬R˙WψsAR˙W=0.K
17 16 oveq2d KHLWHRA¬R˙WψsAs˙R˙W=s˙0.K
18 simpl1l KHLWHRA¬R˙WψsAKHL
19 hlol KHLKOL
20 18 19 syl KHLWHRA¬R˙WψsAKOL
21 1 5 atbase sAsB
22 21 adantl KHLWHRA¬R˙WψsAsB
23 1 3 13 olj01 KOLsBs˙0.K=s
24 20 22 23 syl2anc KHLWHRA¬R˙WψsAs˙0.K=s
25 17 24 eqtrd KHLWHRA¬R˙WψsAs˙R˙W=s
26 25 eqeq1d KHLWHRA¬R˙WψsAs˙R˙W=Rs=R
27 26 anbi2d KHLWHRA¬R˙WψsAφs˙R˙W=Rφs=R
28 12 26 27 3bitr4d KHLWHRA¬R˙WψsAs˙R˙W=Rφs˙R˙W=R
29 28 anbi2d KHLWHRA¬R˙WψsA¬s˙Ws˙R˙W=R¬s˙Wφs˙R˙W=R
30 8 29 bitr4id KHLWHRA¬R˙WψsA¬s˙Wφs˙R˙W=R¬s˙Ws˙R˙W=R