| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg12e.z |
|
| 9 |
|
simp33 |
|
| 10 |
|
simpl1 |
|
| 11 |
|
simpl21 |
|
| 12 |
|
simpl22 |
|
| 13 |
|
simpl23 |
|
| 14 |
|
simpl31 |
|
| 15 |
|
simpl32 |
|
| 16 |
1 2 3 4 5 6 7
|
cdlemg12d |
|
| 17 |
10 11 12 13 14 15 16
|
syl123anc |
|
| 18 |
|
simpr |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
simp11l |
|
| 21 |
20
|
adantr |
|
| 22 |
|
hlol |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
simpl11 |
|
| 25 |
|
eqid |
|
| 26 |
25 5 6 7
|
trlcl |
|
| 27 |
24 11 26
|
syl2anc |
|
| 28 |
25 2 8
|
olj01 |
|
| 29 |
23 27 28
|
syl2anc |
|
| 30 |
19 29
|
eqtrd |
|
| 31 |
17 30
|
breqtrd |
|
| 32 |
|
hlatl |
|
| 33 |
21 32
|
syl |
|
| 34 |
|
hlop |
|
| 35 |
21 34
|
syl |
|
| 36 |
25 5 6 7
|
trlcl |
|
| 37 |
24 12 36
|
syl2anc |
|
| 38 |
|
simp12l |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simp13l |
|
| 41 |
40
|
adantr |
|
| 42 |
25 2 4
|
hlatjcl |
|
| 43 |
21 39 41 42
|
syl3anc |
|
| 44 |
25 1 8
|
opnlen0 |
|
| 45 |
35 37 43 15 44
|
syl31anc |
|
| 46 |
|
simp11r |
|
| 47 |
46
|
adantr |
|
| 48 |
8 4 5 6 7
|
trlatn0 |
|
| 49 |
21 47 12 48
|
syl21anc |
|
| 50 |
45 49
|
mpbird |
|
| 51 |
25 1 8
|
opnlen0 |
|
| 52 |
35 27 43 14 51
|
syl31anc |
|
| 53 |
8 4 5 6 7
|
trlatn0 |
|
| 54 |
21 47 11 53
|
syl21anc |
|
| 55 |
52 54
|
mpbird |
|
| 56 |
1 4
|
atcmp |
|
| 57 |
33 50 55 56
|
syl3anc |
|
| 58 |
31 57
|
mpbid |
|
| 59 |
58
|
eqcomd |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
necon3d |
|
| 62 |
9 61
|
mpd |
|