Metamath Proof Explorer


Theorem cdlemg19

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg19 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
9 8 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K Lat
10 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A
11 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
12 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F T G T
13 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
14 11 12 10 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P A
15 eqid Base K = Base K
16 15 2 4 hlatjcl K HL P A F G P A P ˙ F G P Base K
17 8 10 14 16 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P Base K
18 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
19 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
20 11 12 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q A
21 15 2 4 hlatjcl K HL Q A F G Q A Q ˙ F G Q Base K
22 8 18 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q Base K
23 15 3 latmcom K Lat P ˙ F G P Base K Q ˙ F G Q Base K P ˙ F G P ˙ Q ˙ F G Q = Q ˙ F G Q ˙ P ˙ F G P
24 9 17 22 23 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q = Q ˙ F G Q ˙ P ˙ F G P
25 1 2 3 4 5 6 7 cdlemg19a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q = P ˙ F G P ˙ W
26 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
27 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
28 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
29 28 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q P
30 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
31 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P
32 1 4 5 6 ltrnatneq K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W G P P G Q Q
33 11 30 27 26 31 32 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q Q
34 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R G ˙ P ˙ Q
35 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
36 8 10 18 35 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ Q = Q ˙ P
37 34 36 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R G ˙ Q ˙ P
38 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q P ˙ Q
39 2 4 hlatjcom K HL F G P A F G Q A F G P ˙ F G Q = F G Q ˙ F G P
40 8 14 20 39 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q = F G Q ˙ F G P
41 38 40 36 3netr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q ˙ F G P Q ˙ P
42 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
43 eqcom P ˙ r = Q ˙ r Q ˙ r = P ˙ r
44 43 anbi2i ¬ r ˙ W P ˙ r = Q ˙ r ¬ r ˙ W Q ˙ r = P ˙ r
45 44 rexbii r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W Q ˙ r = P ˙ r
46 42 45 sylnib K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
47 1 2 3 4 5 6 7 cdlemg19a K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P F G Q ˙ F G P Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r Q ˙ F G Q ˙ P ˙ F G P = Q ˙ F G Q ˙ W
48 11 26 27 12 29 33 37 41 46 47 syl333anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q ˙ P ˙ F G P = Q ˙ F G Q ˙ W
49 24 25 48 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ W = Q ˙ F G Q ˙ W