Metamath Proof Explorer


Theorem cdlemg19a

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg19a KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ=P˙FGP˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKLat
10 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA
11 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFTGT
13 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
14 11 12 10 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGPA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
17 8 10 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGPBaseK
18 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA
19 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
20 11 12 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQA
21 15 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
22 8 18 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQBaseK
23 15 1 3 latmle1 KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQ˙P˙FGP
24 9 17 22 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙P˙FGP
25 1 2 3 4 5 6 7 cdlemg18 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙W
26 1 2 3 4 5 6 7 cdlemg18d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQA
27 15 4 atbase P˙FGP˙Q˙FGQAP˙FGP˙Q˙FGQBaseK
28 26 27 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQBaseK
29 simp11r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rWH
30 15 5 lhpbase WHWBaseK
31 29 30 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rWBaseK
32 15 1 3 latlem12 KLatP˙FGP˙Q˙FGQBaseKP˙FGPBaseKWBaseKP˙FGP˙Q˙FGQ˙P˙FGPP˙FGP˙Q˙FGQ˙WP˙FGP˙Q˙FGQ˙P˙FGP˙W
33 9 28 17 31 32 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙P˙FGPP˙FGP˙Q˙FGQ˙WP˙FGP˙Q˙FGQ˙P˙FGP˙W
34 24 25 33 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙P˙FGP˙W
35 hlatl KHLKAtLat
36 8 35 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKAtLat
37 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
38 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
39 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFT
40 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGT
41 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙Q
42 1 2 3 4 5 6 cdlemg11a KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPP
43 11 37 38 39 40 41 42 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGPP
44 43 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPFGP
45 1 2 3 4 5 lhpat KHLWHPA¬P˙WFGPAPFGPP˙FGP˙WA
46 11 37 14 44 45 syl112anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙WA
47 1 4 atcmp KAtLatP˙FGP˙Q˙FGQAP˙FGP˙WAP˙FGP˙Q˙FGQ˙P˙FGP˙WP˙FGP˙Q˙FGQ=P˙FGP˙W
48 36 26 46 47 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ˙P˙FGP˙WP˙FGP˙Q˙FGQ=P˙FGP˙W
49 34 48 mpbid KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ=P˙FGP˙W