Metamath Proof Explorer


Theorem cdlemg47a

Description: TODO: fix comment. TODO: Use this above in place of ( FP ) = P antecedents? (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b B=BaseK
cdlemg46.h H=LHypK
cdlemg46.t T=LTrnKW
Assertion cdlemg47a KHLWHFTGTF=IBFG=GF

Proof

Step Hyp Ref Expression
1 cdlemg46.b B=BaseK
2 cdlemg46.h H=LHypK
3 cdlemg46.t T=LTrnKW
4 simp1 KHLWHFTGTF=IBKHLWH
5 simp2r KHLWHFTGTF=IBGT
6 1 2 3 ltrn1o KHLWHGTG:B1-1 ontoB
7 4 5 6 syl2anc KHLWHFTGTF=IBG:B1-1 ontoB
8 f1of G:B1-1 ontoBG:BB
9 7 8 syl KHLWHFTGTF=IBG:BB
10 fcoi1 G:BBGIB=G
11 9 10 syl KHLWHFTGTF=IBGIB=G
12 simp3 KHLWHFTGTF=IBF=IB
13 12 coeq2d KHLWHFTGTF=IBGF=GIB
14 12 coeq1d KHLWHFTGTF=IBFG=IBG
15 fcoi2 G:BBIBG=G
16 9 15 syl KHLWHFTGTF=IBIBG=G
17 14 16 eqtrd KHLWHFTGTF=IBFG=G
18 11 13 17 3eqtr4rd KHLWHFTGTF=IBFG=GF