Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|
2 |
|
cdlemk1.l |
|
3 |
|
cdlemk1.j |
|
4 |
|
cdlemk1.m |
|
5 |
|
cdlemk1.a |
|
6 |
|
cdlemk1.h |
|
7 |
|
cdlemk1.t |
|
8 |
|
cdlemk1.r |
|
9 |
|
cdlemk1.s |
|
10 |
|
cdlemk1.o |
|
11 |
|
cdlemk1.u |
|
12 |
|
cdlemk2a.q |
|
13 |
|
simp11 |
|
14 |
|
simp23 |
|
15 |
|
simp21r |
|
16 |
|
simp12 |
|
17 |
|
simp13 |
|
18 |
|
simp21l |
|
19 |
|
simp3r1 |
|
20 |
|
simp3r3 |
|
21 |
20
|
necomd |
|
22 |
19 21
|
jca |
|
23 |
|
simp3l1 |
|
24 |
|
simp3l3 |
|
25 |
|
simp3l2 |
|
26 |
23 24 25
|
3jca |
|
27 |
|
simp22 |
|
28 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuv2 |
|
29 |
13 14 15 16 17 18 22 26 27 28
|
syl333anc |
|
30 |
2 3 5 6 7 8
|
trljat1 |
|
31 |
13 15 27 30
|
syl3anc |
|
32 |
10
|
fveq1i |
|
33 |
32
|
a1i |
|
34 |
6 7 8
|
trlcocnv |
|
35 |
13 15 17 34
|
syl3anc |
|
36 |
33 35
|
oveq12d |
|
37 |
31 36
|
oveq12d |
|
38 |
12
|
fveq1i |
|
39 |
18 17
|
jca |
|
40 |
|
simp3r2 |
|
41 |
40 19
|
jca |
|
42 |
1 2 3 5 6 7 8 4 9
|
cdlemk12 |
|
43 |
13 16 15 39 27 14 26 41 20 42
|
syl333anc |
|
44 |
38 43
|
eqtr2id |
|
45 |
29 37 44
|
3eqtrd |
|