Metamath Proof Explorer


Theorem cdlemk20

Description: Part of proof of Lemma K of Crawley p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be f_i. Our D , C , O , Q , U , V represent their f_1, f_2, k_1, k_2, sigma_1, sigma_2. (Contributed by NM, 5-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
cdlemk2a.q Q=SC
Assertion cdlemk20 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDUCP=QP

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 cdlemk1.u U=eTιjT|jP=P˙Re˙OP˙ReD-1
12 cdlemk2a.q Q=SC
13 simp11 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDKHLWH
14 simp23 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRF=RN
15 simp21r KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDCT
16 simp12 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDFT
17 simp13 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDDT
18 simp21l KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDNT
19 simp3r1 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRDRF
20 simp3r3 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRCRD
21 20 necomd KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRDRC
22 19 21 jca KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRDRFRDRC
23 simp3l1 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDFIB
24 simp3l3 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDCIB
25 simp3l2 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDDIB
26 23 24 25 3jca KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDFIBCIBDIB
27 simp22 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDPA¬P˙W
28 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 KHLWHRF=RNCTFTDTNTRDRFRDRCFIBCIBDIBPA¬P˙WUCP=P˙RC˙OP˙RCD-1
29 13 14 15 16 17 18 22 26 27 28 syl333anc KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDUCP=P˙RC˙OP˙RCD-1
30 2 3 5 6 7 8 trljat1 KHLWHCTPA¬P˙WP˙RC=P˙CP
31 13 15 27 30 syl3anc KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDP˙RC=P˙CP
32 10 fveq1i OP=SDP
33 32 a1i KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDOP=SDP
34 6 7 8 trlcocnv KHLWHCTDTRCD-1=RDC-1
35 13 15 17 34 syl3anc KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRCD-1=RDC-1
36 33 35 oveq12d KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDOP˙RCD-1=SDP˙RDC-1
37 31 36 oveq12d KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDP˙RC˙OP˙RCD-1=P˙CP˙SDP˙RDC-1
38 12 fveq1i QP=SCP
39 18 17 jca KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDNTDT
40 simp3r2 KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRCRF
41 40 19 jca KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDRCRFRDRF
42 1 2 3 5 6 7 8 4 9 cdlemk12 KHLWHFTCTNTDTPA¬P˙WRF=RNFIBCIBDIBRCRFRDRFRCRDSCP=P˙CP˙SDP˙RDC-1
43 13 16 15 39 27 14 26 41 20 42 syl333anc KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDSCP=P˙CP˙SDP˙RDC-1
44 38 43 eqtr2id KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDP˙CP˙SDP˙RDC-1=QP
45 29 37 44 3eqtrd KHLWHFTDTNTCTPA¬P˙WRF=RNFIBDIBCIBRDRFRCRFRCRDUCP=QP