Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|
2 |
|
cdlemk3.l |
|
3 |
|
cdlemk3.j |
|
4 |
|
cdlemk3.m |
|
5 |
|
cdlemk3.a |
|
6 |
|
cdlemk3.h |
|
7 |
|
cdlemk3.t |
|
8 |
|
cdlemk3.r |
|
9 |
|
cdlemk3.s |
|
10 |
|
cdlemk3.u1 |
|
11 |
|
cdlemk3.x |
|
12 |
|
fveq1 |
|
13 |
|
simpl11 |
|
14 |
|
simpl12 |
|
15 |
13 14
|
jca |
|
16 |
|
simpl31 |
|
17 |
|
simp11 |
|
18 |
|
simp12 |
|
19 |
17 18
|
jca |
|
20 |
|
simp13 |
|
21 |
|
simp22l |
|
22 |
19 20 21
|
3jca |
|
23 |
22
|
adantr |
|
24 |
|
simp211 |
|
25 |
|
simp32 |
|
26 |
|
simp213 |
|
27 |
24 25 26
|
3jca |
|
28 |
27
|
adantr |
|
29 |
|
simp332 |
|
30 |
|
simp333 |
|
31 |
29 30
|
jca |
|
32 |
|
simp212 |
|
33 |
|
simp22r |
|
34 |
|
simp331 |
|
35 |
32 33 34
|
3jca |
|
36 |
|
simp23 |
|
37 |
31 35 36
|
3jca |
|
38 |
37
|
adantr |
|
39 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkuel-3 |
|
40 |
23 28 38 39
|
syl3anc |
|
41 |
|
simpl23 |
|
42 |
|
simpr |
|
43 |
2 5 6 7
|
cdlemd |
|
44 |
15 16 40 41 42 43
|
syl311anc |
|
45 |
44
|
ex |
|
46 |
12 45
|
impbid2 |
|
47 |
46
|
3expia |
|
48 |
47
|
3expd |
|
49 |
48
|
imp31 |
|
50 |
49
|
pm5.74d |
|
51 |
50
|
ralbidva |
|
52 |
51
|
riotabidva |
|
53 |
11 52
|
eqtrid |
|