| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk5.b |  | 
						
							| 2 |  | cdlemk5.l |  | 
						
							| 3 |  | cdlemk5.j |  | 
						
							| 4 |  | cdlemk5.m |  | 
						
							| 5 |  | cdlemk5.a |  | 
						
							| 6 |  | cdlemk5.h |  | 
						
							| 7 |  | cdlemk5.t |  | 
						
							| 8 |  | cdlemk5.r |  | 
						
							| 9 |  | cdlemk5.z |  | 
						
							| 10 |  | cdlemk5.y |  | 
						
							| 11 |  | cdlemk5.x |  | 
						
							| 12 |  | cdlemk5.u |  | 
						
							| 13 |  | simp11 |  | 
						
							| 14 |  | simp21l |  | 
						
							| 15 |  | simp12 |  | 
						
							| 16 |  | simp13 |  | 
						
							| 17 |  | simp21r |  | 
						
							| 18 | 1 6 7 8 | trlnid |  | 
						
							| 19 | 13 15 16 17 14 18 | syl122anc |  | 
						
							| 20 | 15 19 16 | 3jca |  | 
						
							| 21 |  | simp22 |  | 
						
							| 22 |  | simp23 |  | 
						
							| 23 |  | simp3 |  | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk55 |  | 
						
							| 25 | 13 14 20 21 22 23 24 | syl231anc |  | 
						
							| 26 | 6 7 | ltrnco |  | 
						
							| 27 | 13 21 22 26 | syl3anc |  | 
						
							| 28 | 11 12 | cdlemk40f |  | 
						
							| 29 | 17 27 28 | syl2anc |  | 
						
							| 30 | 11 12 | cdlemk40f |  | 
						
							| 31 | 17 21 30 | syl2anc |  | 
						
							| 32 | 11 12 | cdlemk40f |  | 
						
							| 33 | 17 22 32 | syl2anc |  | 
						
							| 34 | 31 33 | coeq12d |  | 
						
							| 35 | 25 29 34 | 3eqtr4d |  |