Description: Lemma for cdlemk55u . (Contributed by NM, 31-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
cdlemk5.u | |
||
Assertion | cdlemk55u1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | cdlemk5.u | |
|
13 | simp11 | |
|
14 | simp21l | |
|
15 | simp12 | |
|
16 | simp13 | |
|
17 | simp21r | |
|
18 | 1 6 7 8 | trlnid | |
19 | 13 15 16 17 14 18 | syl122anc | |
20 | 15 19 16 | 3jca | |
21 | simp22 | |
|
22 | simp23 | |
|
23 | simp3 | |
|
24 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk55 | |
25 | 13 14 20 21 22 23 24 | syl231anc | |
26 | 6 7 | ltrnco | |
27 | 13 21 22 26 | syl3anc | |
28 | 11 12 | cdlemk40f | |
29 | 17 27 28 | syl2anc | |
30 | 11 12 | cdlemk40f | |
31 | 17 21 30 | syl2anc | |
32 | 11 12 | cdlemk40f | |
33 | 17 22 32 | syl2anc | |
34 | 31 33 | coeq12d | |
35 | 25 29 34 | 3eqtr4d | |