Metamath Proof Explorer


Theorem cdlemn6

Description: Part of proof of Lemma N of Crawley p. 121 line 35. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B=BaseK
cdlemn8.l ˙=K
cdlemn8.a A=AtomsK
cdlemn8.h H=LHypK
cdlemn8.p P=ocKW
cdlemn8.o O=hTIB
cdlemn8.t T=LTrnKW
cdlemn8.e E=TEndoKW
cdlemn8.u U=DVecHKW
cdlemn8.s +˙=+U
cdlemn8.f F=ιhT|hP=Q
Assertion cdlemn6 KHLWHQA¬Q˙WRA¬R˙WsEgTsFs+˙gO=sFgs

Proof

Step Hyp Ref Expression
1 cdlemn8.b B=BaseK
2 cdlemn8.l ˙=K
3 cdlemn8.a A=AtomsK
4 cdlemn8.h H=LHypK
5 cdlemn8.p P=ocKW
6 cdlemn8.o O=hTIB
7 cdlemn8.t T=LTrnKW
8 cdlemn8.e E=TEndoKW
9 cdlemn8.u U=DVecHKW
10 cdlemn8.s +˙=+U
11 cdlemn8.f F=ιhT|hP=Q
12 simp1 KHLWHQA¬Q˙WRA¬R˙WsEgTKHLWH
13 simp3l KHLWHQA¬Q˙WRA¬R˙WsEgTsE
14 2 3 4 5 lhpocnel2 KHLWHPA¬P˙W
15 12 14 syl KHLWHQA¬Q˙WRA¬R˙WsEgTPA¬P˙W
16 simp2l KHLWHQA¬Q˙WRA¬R˙WsEgTQA¬Q˙W
17 2 3 4 7 11 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
18 12 15 16 17 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTFT
19 4 7 8 tendocl KHLWHsEFTsFT
20 12 13 18 19 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTsFT
21 simp3r KHLWHQA¬Q˙WRA¬R˙WsEgTgT
22 1 4 7 8 6 tendo0cl KHLWHOE
23 12 22 syl KHLWHQA¬Q˙WRA¬R˙WsEgTOE
24 eqid ScalarU=ScalarU
25 eqid +ScalarU=+ScalarU
26 4 7 8 9 24 10 25 dvhopvadd KHLWHsFTsEgTOEsFs+˙gO=sFgs+ScalarUO
27 12 20 13 21 23 26 syl122anc KHLWHQA¬Q˙WRA¬R˙WsEgTsFs+˙gO=sFgs+ScalarUO
28 eqid tE,uEhTthuh=tE,uEhTthuh
29 4 7 8 9 24 28 25 dvhfplusr KHLWH+ScalarU=tE,uEhTthuh
30 12 29 syl KHLWHQA¬Q˙WRA¬R˙WsEgT+ScalarU=tE,uEhTthuh
31 30 oveqd KHLWHQA¬Q˙WRA¬R˙WsEgTs+ScalarUO=stE,uEhTthuhO
32 1 4 7 8 6 28 tendo0plr KHLWHsEstE,uEhTthuhO=s
33 12 13 32 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTstE,uEhTthuhO=s
34 31 33 eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTs+ScalarUO=s
35 34 opeq2d KHLWHQA¬Q˙WRA¬R˙WsEgTsFgs+ScalarUO=sFgs
36 27 35 eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTsFs+˙gO=sFgs