Step |
Hyp |
Ref |
Expression |
1 |
|
rerpdivcl |
|
2 |
|
ceilval |
|
3 |
1 2
|
syl |
|
4 |
|
recn |
|
5 |
4
|
adantr |
|
6 |
|
rpcn |
|
7 |
6
|
adantl |
|
8 |
|
rpne0 |
|
9 |
8
|
adantl |
|
10 |
5 7 9
|
divnegd |
|
11 |
10
|
fveq2d |
|
12 |
|
renegcl |
|
13 |
|
fldivmod |
|
14 |
12 13
|
sylan |
|
15 |
11 14
|
eqtrd |
|
16 |
15
|
negeqd |
|
17 |
12
|
recnd |
|
18 |
17
|
adantr |
|
19 |
|
modcl |
|
20 |
12 19
|
sylan |
|
21 |
20
|
recnd |
|
22 |
18 21
|
subcld |
|
23 |
22 7 9
|
divnegd |
|
24 |
16 23
|
eqtrd |
|
25 |
18 21
|
negsubdid |
|
26 |
4
|
negnegd |
|
27 |
26
|
adantr |
|
28 |
27
|
oveq1d |
|
29 |
|
negmod |
|
30 |
29
|
oveq2d |
|
31 |
25 28 30
|
3eqtrd |
|
32 |
31
|
oveq1d |
|
33 |
3 24 32
|
3eqtrd |
|