| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgsex4gOLD.1 |  | 
						
							| 2 |  | cgsex4gOLD.2 |  | 
						
							| 3 | 2 | biimpa |  | 
						
							| 4 | 3 | exlimivv |  | 
						
							| 5 | 4 | exlimivv |  | 
						
							| 6 |  | elisset |  | 
						
							| 7 |  | elisset |  | 
						
							| 8 | 6 7 | anim12i |  | 
						
							| 9 |  | exdistrv |  | 
						
							| 10 | 8 9 | sylibr |  | 
						
							| 11 |  | elisset |  | 
						
							| 12 |  | elisset |  | 
						
							| 13 | 11 12 | anim12i |  | 
						
							| 14 |  | exdistrv |  | 
						
							| 15 | 13 14 | sylibr |  | 
						
							| 16 | 10 15 | anim12i |  | 
						
							| 17 |  | eqeq1 |  | 
						
							| 18 | 17 | anbi2d |  | 
						
							| 19 | 18 | anbi1d |  | 
						
							| 20 | 19 | exbidv |  | 
						
							| 21 | 20 | notbid |  | 
						
							| 22 |  | eqeq1 |  | 
						
							| 23 | 22 | anbi1d |  | 
						
							| 24 | 23 | anbi2d |  | 
						
							| 25 | 24 | exbidv |  | 
						
							| 26 | 25 | notbid |  | 
						
							| 27 | 21 26 | alcomw |  | 
						
							| 28 | 27 | notbii |  | 
						
							| 29 |  | 2exnaln |  | 
						
							| 30 |  | 2exnaln |  | 
						
							| 31 | 28 29 30 | 3bitr4i |  | 
						
							| 32 | 31 | exbii |  | 
						
							| 33 |  | 4exdistrv |  | 
						
							| 34 | 32 33 | bitri |  | 
						
							| 35 | 16 34 | sylibr |  | 
						
							| 36 | 1 | 2eximi |  | 
						
							| 37 | 36 | 2eximi |  | 
						
							| 38 | 35 37 | syl |  | 
						
							| 39 | 2 | biimprcd |  | 
						
							| 40 | 39 | ancld |  | 
						
							| 41 | 40 | 2eximdv |  | 
						
							| 42 | 41 | 2eximdv |  | 
						
							| 43 | 38 42 | syl5com |  | 
						
							| 44 | 5 43 | impbid2 |  |