Metamath Proof Explorer


Theorem chordthm

Description: The intersecting chords theorem.

If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA x. PB and PC x. PD are equal.

The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to _pi .

The result is proven by using chordthmlem5 twice to show that PA x. PB and PC x. PD both equal BQ2 - PQ2. This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthm.angdef F=x0,y0logyx
chordthm.A φA
chordthm.B φB
chordthm.C φC
chordthm.D φD
chordthm.P φP
chordthm.AneP φAP
chordthm.BneP φBP
chordthm.CneP φCP
chordthm.DneP φDP
chordthm.APB φAPFBP=π
chordthm.CPD φCPFDP=π
chordthm.Q φQ
chordthm.ABcirc φAQ=BQ
chordthm.ACcirc φAQ=CQ
chordthm.ADcirc φAQ=DQ
Assertion chordthm φPAPB=PCPD

Proof

Step Hyp Ref Expression
1 chordthm.angdef F=x0,y0logyx
2 chordthm.A φA
3 chordthm.B φB
4 chordthm.C φC
5 chordthm.D φD
6 chordthm.P φP
7 chordthm.AneP φAP
8 chordthm.BneP φBP
9 chordthm.CneP φCP
10 chordthm.DneP φDP
11 chordthm.APB φAPFBP=π
12 chordthm.CPD φCPFDP=π
13 chordthm.Q φQ
14 chordthm.ABcirc φAQ=BQ
15 chordthm.ACcirc φAQ=CQ
16 chordthm.ADcirc φAQ=DQ
17 10 necomd φPD
18 1 4 6 5 9 17 angpieqvd φCPFDP=πv01P=vC+1vD
19 12 18 mpbid φv01P=vC+1vD
20 8 necomd φPB
21 1 2 6 3 7 20 angpieqvd φAPFBP=πw01P=wA+1wB
22 11 21 mpbid φw01P=wA+1wB
23 22 adantr φv01P=vC+1vDw01P=wA+1wB
24 14 ad2antrr φv01P=vC+1vDw01P=wA+1wBAQ=BQ
25 16 ad2antrr φv01P=vC+1vDw01P=wA+1wBAQ=DQ
26 24 25 eqtr3d φv01P=vC+1vDw01P=wA+1wBBQ=DQ
27 26 oveq1d φv01P=vC+1vDw01P=wA+1wBBQ2=DQ2
28 27 oveq1d φv01P=vC+1vDw01P=wA+1wBBQ2PQ2=DQ2PQ2
29 2 ad2antrr φv01P=vC+1vDw01P=wA+1wBA
30 3 ad2antrr φv01P=vC+1vDw01P=wA+1wBB
31 13 ad2antrr φv01P=vC+1vDw01P=wA+1wBQ
32 ioossicc 0101
33 simprl φv01P=vC+1vDw01P=wA+1wBw01
34 32 33 sselid φv01P=vC+1vDw01P=wA+1wBw01
35 simprr φv01P=vC+1vDw01P=wA+1wBP=wA+1wB
36 29 30 31 34 35 24 chordthmlem5 φv01P=vC+1vDw01P=wA+1wBPAPB=BQ2PQ2
37 4 ad2antrr φv01P=vC+1vDw01P=wA+1wBC
38 5 ad2antrr φv01P=vC+1vDw01P=wA+1wBD
39 simplrl φv01P=vC+1vDw01P=wA+1wBv01
40 32 39 sselid φv01P=vC+1vDw01P=wA+1wBv01
41 simplrr φv01P=vC+1vDw01P=wA+1wBP=vC+1vD
42 15 ad2antrr φv01P=vC+1vDw01P=wA+1wBAQ=CQ
43 42 25 eqtr3d φv01P=vC+1vDw01P=wA+1wBCQ=DQ
44 37 38 31 40 41 43 chordthmlem5 φv01P=vC+1vDw01P=wA+1wBPCPD=DQ2PQ2
45 28 36 44 3eqtr4d φv01P=vC+1vDw01P=wA+1wBPAPB=PCPD
46 23 45 rexlimddv φv01P=vC+1vDPAPB=PCPD
47 19 46 rexlimddv φPAPB=PCPD