Metamath Proof Explorer


Theorem chpmatfval

Description: Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses chpmatfval.c C=NCharPlyMatR
chpmatfval.a A=NMatR
chpmatfval.b B=BaseA
chpmatfval.p P=Poly1R
chpmatfval.y Y=NMatP
chpmatfval.d D=NmaDetP
chpmatfval.s -˙=-Y
chpmatfval.x X=var1R
chpmatfval.m ·˙=Y
chpmatfval.t T=NmatToPolyMatR
chpmatfval.i 1˙=1Y
Assertion chpmatfval NFinRVC=mBDX·˙1˙-˙Tm

Proof

Step Hyp Ref Expression
1 chpmatfval.c C=NCharPlyMatR
2 chpmatfval.a A=NMatR
3 chpmatfval.b B=BaseA
4 chpmatfval.p P=Poly1R
5 chpmatfval.y Y=NMatP
6 chpmatfval.d D=NmaDetP
7 chpmatfval.s -˙=-Y
8 chpmatfval.x X=var1R
9 chpmatfval.m ·˙=Y
10 chpmatfval.t T=NmatToPolyMatR
11 chpmatfval.i 1˙=1Y
12 df-chpmat CharPlyMat=nFin,rVmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
13 12 a1i NFinRVCharPlyMat=nFin,rVmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm
14 oveq12 n=Nr=RnMatr=NMatR
15 14 2 eqtr4di n=Nr=RnMatr=A
16 15 fveq2d n=Nr=RBasenMatr=BaseA
17 16 3 eqtr4di n=Nr=RBasenMatr=B
18 simpl n=Nr=Rn=N
19 simpr n=Nr=Rr=R
20 19 fveq2d n=Nr=RPoly1r=Poly1R
21 20 4 eqtr4di n=Nr=RPoly1r=P
22 18 21 oveq12d n=Nr=RnmaDetPoly1r=NmaDetP
23 22 6 eqtr4di n=Nr=RnmaDetPoly1r=D
24 fveq2 r=RPoly1r=Poly1R
25 24 adantl n=Nr=RPoly1r=Poly1R
26 25 4 eqtr4di n=Nr=RPoly1r=P
27 18 26 oveq12d n=Nr=RnMatPoly1r=NMatP
28 27 5 eqtr4di n=Nr=RnMatPoly1r=Y
29 28 fveq2d n=Nr=R-nMatPoly1r=-Y
30 29 7 eqtr4di n=Nr=R-nMatPoly1r=-˙
31 28 fveq2d n=Nr=RnMatPoly1r=Y
32 31 9 eqtr4di n=Nr=RnMatPoly1r=·˙
33 fveq2 r=Rvar1r=var1R
34 33 8 eqtr4di r=Rvar1r=X
35 34 adantl n=Nr=Rvar1r=X
36 28 fveq2d n=Nr=R1nMatPoly1r=1Y
37 36 11 eqtr4di n=Nr=R1nMatPoly1r=1˙
38 32 35 37 oveq123d n=Nr=Rvar1rnMatPoly1r1nMatPoly1r=X·˙1˙
39 oveq12 n=Nr=RnmatToPolyMatr=NmatToPolyMatR
40 39 10 eqtr4di n=Nr=RnmatToPolyMatr=T
41 40 fveq1d n=Nr=RnmatToPolyMatrm=Tm
42 30 38 41 oveq123d n=Nr=Rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm=X·˙1˙-˙Tm
43 23 42 fveq12d n=Nr=RnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm=DX·˙1˙-˙Tm
44 17 43 mpteq12dv n=Nr=RmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm=mBDX·˙1˙-˙Tm
45 44 adantl NFinRVn=Nr=RmBasenMatrnmaDetPoly1rvar1rnMatPoly1r1nMatPoly1r-nMatPoly1rnmatToPolyMatrm=mBDX·˙1˙-˙Tm
46 simpl NFinRVNFin
47 elex RVRV
48 47 adantl NFinRVRV
49 3 fvexi BV
50 mptexg BVmBDX·˙1˙-˙TmV
51 49 50 mp1i NFinRVmBDX·˙1˙-˙TmV
52 13 45 46 48 51 ovmpod NFinRVNCharPlyMatR=mBDX·˙1˙-˙Tm
53 1 52 eqtrid NFinRVC=mBDX·˙1˙-˙Tm