Metamath Proof Explorer


Theorem chpmatply1

Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in Lang, p. 561: "[the characteristic polynomial] is an element of k[t". (Contributed by AV, 2-Aug-2019) (Proof shortened by AV, 29-Nov-2019)

Ref Expression
Hypotheses chpmatply1.c C=NCharPlyMatR
chpmatply1.a A=NMatR
chpmatply1.b B=BaseA
chpmatply1.p P=Poly1R
chpmatply1.e E=BaseP
Assertion chpmatply1 NFinRCRingMBCME

Proof

Step Hyp Ref Expression
1 chpmatply1.c C=NCharPlyMatR
2 chpmatply1.a A=NMatR
3 chpmatply1.b B=BaseA
4 chpmatply1.p P=Poly1R
5 chpmatply1.e E=BaseP
6 eqid NMatP=NMatP
7 eqid NmaDetP=NmaDetP
8 eqid -NMatP=-NMatP
9 eqid var1R=var1R
10 eqid NMatP=NMatP
11 eqid NmatToPolyMatR=NmatToPolyMatR
12 eqid 1NMatP=1NMatP
13 1 2 3 4 6 7 8 9 10 11 12 chpmatval NFinRCRingMBCM=NmaDetPvar1RNMatP1NMatP-NMatPNmatToPolyMatRM
14 4 ply1crng RCRingPCRing
15 14 3ad2ant2 NFinRCRingMBPCRing
16 crngring RCRingRRing
17 eqid var1RNMatP1NMatP-NMatPNmatToPolyMatRM=var1RNMatP1NMatP-NMatPNmatToPolyMatRM
18 2 3 4 6 9 11 8 10 12 17 chmatcl NFinRRingMBvar1RNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
19 16 18 syl3an2 NFinRCRingMBvar1RNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatP
20 eqid BaseNMatP=BaseNMatP
21 7 6 20 5 mdetcl PCRingvar1RNMatP1NMatP-NMatPNmatToPolyMatRMBaseNMatPNmaDetPvar1RNMatP1NMatP-NMatPNmatToPolyMatRME
22 15 19 21 syl2anc NFinRCRingMBNmaDetPvar1RNMatP1NMatP-NMatPNmatToPolyMatRME
23 13 22 eqeltrd NFinRCRingMBCME