Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in Lang, p. 561: "[the characteristic polynomial] is an element of k[t". (Contributed by AV, 2-Aug-2019) (Proof shortened by AV, 29-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chpmatply1.c | |
|
chpmatply1.a | |
||
chpmatply1.b | |
||
chpmatply1.p | |
||
chpmatply1.e | |
||
Assertion | chpmatply1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatply1.c | |
|
2 | chpmatply1.a | |
|
3 | chpmatply1.b | |
|
4 | chpmatply1.p | |
|
5 | chpmatply1.e | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 1 2 3 4 6 7 8 9 10 11 12 | chpmatval | |
14 | 4 | ply1crng | |
15 | 14 | 3ad2ant2 | |
16 | crngring | |
|
17 | eqid | |
|
18 | 2 3 4 6 9 11 8 10 12 17 | chmatcl | |
19 | 16 18 | syl3an2 | |
20 | eqid | |
|
21 | 7 6 20 5 | mdetcl | |
22 | 15 19 21 | syl2anc | |
23 | 13 22 | eqeltrd | |