Metamath Proof Explorer


Theorem chtge0

Description: The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion chtge0 A0θA

Proof

Step Hyp Ref Expression
1 ppifi A0AFin
2 simpr Ap0Ap0A
3 2 elin2d Ap0Ap
4 prmuz2 pp2
5 3 4 syl Ap0Ap2
6 eluz2b2 p2p1<p
7 5 6 sylib Ap0Ap1<p
8 7 simpld Ap0Ap
9 8 nnrpd Ap0Ap+
10 9 relogcld Ap0Alogp
11 8 nnred Ap0Ap
12 7 simprd Ap0A1<p
13 11 12 rplogcld Ap0Alogp+
14 13 rpge0d Ap0A0logp
15 1 10 14 fsumge0 A0p0Alogp
16 chtval AθA=p0Alogp
17 15 16 breqtrrd A0θA