Metamath Proof Explorer


Theorem circsubm

Description: The circle group T is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses circgrp.1 C=abs-11
circgrp.2 T=mulGrpfld𝑠C
Assertion circsubm CSubMndmulGrpfld

Proof

Step Hyp Ref Expression
1 circgrp.1 C=abs-11
2 circgrp.2 T=mulGrpfld𝑠C
3 oveq2 x=yix=iy
4 3 fveq2d x=yeix=eiy
5 4 cbvmptv xeix=yeiy
6 5 1 efifo xeix:ontoC
7 forn xeix:ontoCranxeix=C
8 6 7 ax-mp ranxeix=C
9 8 eqcomi C=ranxeix
10 9 oveq2i mulGrpfld𝑠C=mulGrpfld𝑠ranxeix
11 ax-icn i
12 11 a1i i
13 resubdrg SubRingfldfldDivRing
14 13 simpli SubRingfld
15 subrgsubg SubRingfldSubGrpfld
16 14 15 ax-mp SubGrpfld
17 16 a1i SubGrpfld
18 5 10 12 17 efsubm ranxeixSubMndmulGrpfld
19 18 mptru ranxeixSubMndmulGrpfld
20 9 19 eqeltri CSubMndmulGrpfld