Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clatglb.b | |
|
clatglb.l | |
||
clatglb.g | |
||
Assertion | clatleglb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | |
|
2 | clatglb.l | |
|
3 | clatglb.g | |
|
4 | 1 2 3 | clatglble | |
5 | 4 | 3expa | |
6 | 5 | 3adantl2 | |
7 | simpl1 | |
|
8 | clatl | |
|
9 | 7 8 | syl | |
10 | simpl2 | |
|
11 | 1 3 | clatglbcl | |
12 | 11 | 3adant2 | |
13 | 12 | adantr | |
14 | ssel | |
|
15 | 14 | 3ad2ant3 | |
16 | 15 | imp | |
17 | 1 2 | lattr | |
18 | 9 10 13 16 17 | syl13anc | |
19 | 6 18 | mpan2d | |
20 | 19 | ralrimdva | |
21 | 1 2 3 | clatglb | |
22 | breq1 | |
|
23 | 22 | ralbidv | |
24 | breq1 | |
|
25 | 23 24 | imbi12d | |
26 | 25 | rspccv | |
27 | 21 26 | simpl2im | |
28 | 27 | ex | |
29 | 28 | com23 | |
30 | 29 | 3imp | |
31 | 20 30 | impbid | |