Metamath Proof Explorer


Theorem clim2ser

Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
clim2ser.2 φNZ
clim2ser.4 φkZFk
clim2ser.5 φseqM+FA
Assertion clim2ser φseqN+1+FAseqM+FN

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 clim2ser.2 φNZ
3 clim2ser.4 φkZFk
4 clim2ser.5 φseqM+FA
5 eqid N+1=N+1
6 2 1 eleqtrdi φNM
7 peano2uz NMN+1M
8 6 7 syl φN+1M
9 eluzelz N+1MN+1
10 8 9 syl φN+1
11 eluzel2 NMM
12 6 11 syl φM
13 1 12 3 serf φseqM+F:Z
14 13 2 ffvelcdmd φseqM+FN
15 seqex seqN+1+FV
16 15 a1i φseqN+1+FV
17 13 adantr φjN+1seqM+F:Z
18 8 1 eleqtrrdi φN+1Z
19 1 uztrn2 N+1ZjN+1jZ
20 18 19 sylan φjN+1jZ
21 17 20 ffvelcdmd φjN+1seqM+Fj
22 addcl kxk+x
23 22 adantl φjN+1kxk+x
24 addass kxyk+x+y=k+x+y
25 24 adantl φjN+1kxyk+x+y=k+x+y
26 simpr φjN+1jN+1
27 6 adantr φjN+1NM
28 elfzuz kMjkM
29 28 1 eleqtrrdi kMjkZ
30 29 3 sylan2 φkMjFk
31 30 adantlr φjN+1kMjFk
32 23 25 26 27 31 seqsplit φjN+1seqM+Fj=seqM+FN+seqN+1+Fj
33 32 oveq1d φjN+1seqM+FjseqM+FN=seqM+FN+seqN+1+Fj-seqM+FN
34 14 adantr φjN+1seqM+FN
35 1 uztrn2 N+1ZkN+1kZ
36 18 35 sylan φkN+1kZ
37 36 3 syldan φkN+1Fk
38 5 10 37 serf φseqN+1+F:N+1
39 38 ffvelcdmda φjN+1seqN+1+Fj
40 34 39 pncan2d φjN+1seqM+FN+seqN+1+Fj-seqM+FN=seqN+1+Fj
41 33 40 eqtr2d φjN+1seqN+1+Fj=seqM+FjseqM+FN
42 5 10 4 14 16 21 41 climsubc1 φseqN+1+FAseqM+FN