Metamath Proof Explorer


Theorem climconst

Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climconst.1 Z=M
climconst.2 φM
climconst.3 φFV
climconst.4 φA
climconst.5 φkZFk=A
Assertion climconst φFA

Proof

Step Hyp Ref Expression
1 climconst.1 Z=M
2 climconst.2 φM
3 climconst.3 φFV
4 climconst.4 φA
5 climconst.5 φkZFk=A
6 uzid MMM
7 2 6 syl φMM
8 7 1 eleqtrrdi φMZ
9 4 subidd φAA=0
10 9 fveq2d φAA=0
11 abs0 0=0
12 10 11 eqtrdi φAA=0
13 12 adantr φx+AA=0
14 rpgt0 x+0<x
15 14 adantl φx+0<x
16 13 15 eqbrtrd φx+AA<x
17 16 ralrimivw φx+kZAA<x
18 fveq2 j=Mj=M
19 18 1 eqtr4di j=Mj=Z
20 19 raleqdv j=MkjAA<xkZAA<x
21 20 rspcev MZkZAA<xjZkjAA<x
22 8 17 21 syl2an2r φx+jZkjAA<x
23 22 ralrimiva φx+jZkjAA<x
24 4 adantr φkZA
25 1 2 3 5 4 24 clim2c φFAx+jZkjAA<x
26 23 25 mpbird φFA