Metamath Proof Explorer


Theorem climdivf

Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climdivf.1 kφ
climdivf.2 _kF
climdivf.3 _kG
climdivf.4 _kH
climdivf.5 Z=M
climdivf.6 φM
climdivf.7 φFA
climdivf.8 φHX
climdivf.9 φGB
climdivf.10 φB0
climdivf.11 φkZFk
climdivf.12 φkZGk0
climdivf.13 φkZHk=FkGk
Assertion climdivf φHAB

Proof

Step Hyp Ref Expression
1 climdivf.1 kφ
2 climdivf.2 _kF
3 climdivf.3 _kG
4 climdivf.4 _kH
5 climdivf.5 Z=M
6 climdivf.6 φM
7 climdivf.7 φFA
8 climdivf.8 φHX
9 climdivf.9 φGB
10 climdivf.10 φB0
11 climdivf.11 φkZFk
12 climdivf.12 φkZGk0
13 climdivf.13 φkZHk=FkGk
14 nfmpt1 _kkZ1Gk
15 simpr φkZkZ
16 12 eldifad φkZGk
17 eldifsni Gk0Gk0
18 12 17 syl φkZGk0
19 16 18 reccld φkZ1Gk
20 eqid kZ1Gk=kZ1Gk
21 20 fvmpt2 kZ1GkkZ1Gkk=1Gk
22 15 19 21 syl2anc φkZkZ1Gkk=1Gk
23 5 fvexi ZV
24 23 mptex kZ1GkV
25 24 a1i φkZ1GkV
26 1 3 14 5 6 9 10 12 22 25 climrecf φkZ1Gk1B
27 22 19 eqeltrd φkZkZ1Gkk
28 11 16 18 divrecd φkZFkGk=Fk1Gk
29 22 eqcomd φkZ1Gk=kZ1Gkk
30 29 oveq2d φkZFk1Gk=FkkZ1Gkk
31 13 28 30 3eqtrd φkZHk=FkkZ1Gkk
32 1 2 14 4 5 6 7 8 26 11 27 31 climmulf φHA1B
33 climcl FAA
34 7 33 syl φA
35 climcl GBB
36 9 35 syl φB
37 34 36 10 divrecd φAB=A1B
38 32 37 breqtrrd φHAB