Metamath Proof Explorer


Theorem climfveqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climfveqmpt.k kφ
climfveqmpt.m φM
climfveqmpt.z Z=M
climfveqmpt.A φAR
climfveqmpt.i φZA
climfveqmpt.b φkABV
climfveqmpt.t φCS
climfveqmpt.l φZC
climfveqmpt.c φkCDW
climfveqmpt.e φkZB=D
Assertion climfveqmpt φkAB=kCD

Proof

Step Hyp Ref Expression
1 climfveqmpt.k kφ
2 climfveqmpt.m φM
3 climfveqmpt.z Z=M
4 climfveqmpt.A φAR
5 climfveqmpt.i φZA
6 climfveqmpt.b φkABV
7 climfveqmpt.t φCS
8 climfveqmpt.l φZC
9 climfveqmpt.c φkCDW
10 climfveqmpt.e φkZB=D
11 4 mptexd φkABV
12 7 mptexd φkCDV
13 nfv kjZ
14 1 13 nfan kφjZ
15 nfcv _kj
16 15 nfcsb1 _kj/kB
17 15 nfcsb1 _kj/kD
18 16 17 nfeq kj/kB=j/kD
19 14 18 nfim kφjZj/kB=j/kD
20 eleq1w k=jkZjZ
21 20 anbi2d k=jφkZφjZ
22 csbeq1a k=jB=j/kB
23 csbeq1a k=jD=j/kD
24 22 23 eqeq12d k=jB=Dj/kB=j/kD
25 21 24 imbi12d k=jφkZB=DφjZj/kB=j/kD
26 19 25 10 chvarfv φjZj/kB=j/kD
27 5 adantr φjZZA
28 simpr φjZjZ
29 27 28 sseldd φjZjA
30 simpr φjAjA
31 nfv kjA
32 1 31 nfan kφjA
33 nfcv _kV
34 16 33 nfel kj/kBV
35 32 34 nfim kφjAj/kBV
36 eleq1w k=jkAjA
37 36 anbi2d k=jφkAφjA
38 22 eleq1d k=jBVj/kBV
39 37 38 imbi12d k=jφkABVφjAj/kBV
40 35 39 6 chvarfv φjAj/kBV
41 eqid kAB=kAB
42 15 16 22 41 fvmptf jAj/kBVkABj=j/kB
43 30 40 42 syl2anc φjAkABj=j/kB
44 29 43 syldan φjZkABj=j/kB
45 8 adantr φjZZC
46 45 28 sseldd φjZjC
47 simpr φjCjC
48 nfv kjC
49 1 48 nfan kφjC
50 nfcv _kW
51 17 50 nfel kj/kDW
52 49 51 nfim kφjCj/kDW
53 eleq1w k=jkCjC
54 53 anbi2d k=jφkCφjC
55 23 eleq1d k=jDWj/kDW
56 54 55 imbi12d k=jφkCDWφjCj/kDW
57 52 56 9 chvarfv φjCj/kDW
58 eqid kCD=kCD
59 15 17 23 58 fvmptf jCj/kDWkCDj=j/kD
60 47 57 59 syl2anc φjCkCDj=j/kD
61 46 60 syldan φjZkCDj=j/kD
62 26 44 61 3eqtr4d φjZkABj=kCDj
63 3 11 12 2 62 climfveq φkAB=kCD