Metamath Proof Explorer


Theorem climfveqmpt3

Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt3.k kφ
climfveqmpt3.m φM
climfveqmpt3.z Z=M
climfveqmpt3.a φAV
climfveqmpt3.c φCW
climfveqmpt3.i φZA
climfveqmpt3.s φZC
climfveqmpt3.b φkZBU
climfveqmpt3.d φkZB=D
Assertion climfveqmpt3 φkAB=kCD

Proof

Step Hyp Ref Expression
1 climfveqmpt3.k kφ
2 climfveqmpt3.m φM
3 climfveqmpt3.z Z=M
4 climfveqmpt3.a φAV
5 climfveqmpt3.c φCW
6 climfveqmpt3.i φZA
7 climfveqmpt3.s φZC
8 climfveqmpt3.b φkZBU
9 climfveqmpt3.d φkZB=D
10 4 mptexd φkABV
11 5 mptexd φkCDV
12 nfv kjZ
13 1 12 nfan kφjZ
14 nfcv _kj
15 14 nfcsb1 _kj/kB
16 14 nfcsb1 _kj/kD
17 15 16 nfeq kj/kB=j/kD
18 13 17 nfim kφjZj/kB=j/kD
19 eleq1w k=jkZjZ
20 19 anbi2d k=jφkZφjZ
21 csbeq1a k=jB=j/kB
22 csbeq1a k=jD=j/kD
23 21 22 eqeq12d k=jB=Dj/kB=j/kD
24 20 23 imbi12d k=jφkZB=DφjZj/kB=j/kD
25 18 24 9 chvarfv φjZj/kB=j/kD
26 6 adantr φjZZA
27 simpr φjZjZ
28 26 27 sseldd φjZjA
29 nfcv _kU
30 15 29 nfel kj/kBU
31 13 30 nfim kφjZj/kBU
32 21 eleq1d k=jBUj/kBU
33 20 32 imbi12d k=jφkZBUφjZj/kBU
34 31 33 8 chvarfv φjZj/kBU
35 eqid kAB=kAB
36 14 15 21 35 fvmptf jAj/kBUkABj=j/kB
37 28 34 36 syl2anc φjZkABj=j/kB
38 7 adantr φjZZC
39 38 27 sseldd φjZjC
40 25 34 eqeltrrd φjZj/kDU
41 eqid kCD=kCD
42 14 16 22 41 fvmptf jCj/kDUkCDj=j/kD
43 39 40 42 syl2anc φjZkCDj=j/kD
44 25 37 43 3eqtr4d φjZkABj=kCDj
45 3 10 11 2 44 climfveq φkAB=kCD