| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmmulg.1 |
|
| 2 |
|
clmmulg.2 |
|
| 3 |
|
clmmulg.3 |
|
| 4 |
|
oveq1 |
|
| 5 |
|
oveq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
oveq1 |
|
| 8 |
|
oveq1 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
|
oveq1 |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq1 |
|
| 14 |
|
oveq1 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
|
oveq1 |
|
| 17 |
|
oveq1 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
|
eqid |
|
| 20 |
1 19 2
|
mulg0 |
|
| 21 |
20
|
adantl |
|
| 22 |
|
eqid |
|
| 23 |
1 22 3 19
|
clm0vs |
|
| 24 |
21 23
|
eqtr4d |
|
| 25 |
|
oveq1 |
|
| 26 |
|
clmgrp |
|
| 27 |
26
|
grpmndd |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
simpr |
|
| 30 |
|
simplr |
|
| 31 |
|
eqid |
|
| 32 |
1 2 31
|
mulgnn0p1 |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
|
simpll |
|
| 35 |
|
eqid |
|
| 36 |
22 35
|
clmzss |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
nn0z |
|
| 39 |
38
|
adantl |
|
| 40 |
37 39
|
sseldd |
|
| 41 |
|
1zzd |
|
| 42 |
37 41
|
sseldd |
|
| 43 |
1 22 3 35 31
|
clmvsdir |
|
| 44 |
34 40 42 30 43
|
syl13anc |
|
| 45 |
1 3
|
clmvs1 |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
oveq2d |
|
| 48 |
44 47
|
eqtrd |
|
| 49 |
33 48
|
eqeq12d |
|
| 50 |
25 49
|
imbitrrid |
|
| 51 |
50
|
ex |
|
| 52 |
|
fveq2 |
|
| 53 |
26
|
ad2antrr |
|
| 54 |
|
nnz |
|
| 55 |
54
|
adantl |
|
| 56 |
|
simplr |
|
| 57 |
|
eqid |
|
| 58 |
1 2 57
|
mulgneg |
|
| 59 |
53 55 56 58
|
syl3anc |
|
| 60 |
|
simpll |
|
| 61 |
36
|
ad2antrr |
|
| 62 |
61 55
|
sseldd |
|
| 63 |
1 22 3 57 35 60 56 62
|
clmvsneg |
|
| 64 |
63
|
eqcomd |
|
| 65 |
59 64
|
eqeq12d |
|
| 66 |
52 65
|
imbitrrid |
|
| 67 |
66
|
ex |
|
| 68 |
6 9 12 15 18 24 51 67
|
zindd |
|
| 69 |
68
|
3impia |
|
| 70 |
69
|
3com23 |
|