| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l |  | 
						
							| 2 |  | simp1l |  | 
						
							| 3 |  | ccatcl |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | ccat0 |  | 
						
							| 6 | 5 | adantlr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 6 7 | biimtrdi |  | 
						
							| 9 | 8 | necon3d |  | 
						
							| 10 | 9 | impr |  | 
						
							| 11 | 10 | 3ad2antr1 |  | 
						
							| 12 | 11 | 3ad2antl1 |  | 
						
							| 13 | 4 12 | jca |  | 
						
							| 14 | 13 | 3adant3 |  | 
						
							| 15 |  | clwwlkccatlem |  | 
						
							| 16 |  | simpl1l |  | 
						
							| 17 |  | simpr1l |  | 
						
							| 18 |  | simpr1r |  | 
						
							| 19 |  | lswccatn0lsw |  | 
						
							| 20 | 16 17 18 19 | syl3anc |  | 
						
							| 21 | 20 | 3adant3 |  | 
						
							| 22 |  | hashgt0 |  | 
						
							| 23 | 22 | 3ad2ant1 |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | ccatfv0 |  | 
						
							| 26 | 16 17 24 25 | syl3anc |  | 
						
							| 27 | 26 | 3adant3 |  | 
						
							| 28 |  | simp3 |  | 
						
							| 29 | 27 28 | eqtrd |  | 
						
							| 30 | 21 29 | preq12d |  | 
						
							| 31 |  | simp23 |  | 
						
							| 32 | 30 31 | eqeltrd |  | 
						
							| 33 | 14 15 32 | 3jca |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 34 35 | isclwwlk |  | 
						
							| 37 | 34 35 | isclwwlk |  | 
						
							| 38 |  | biid |  | 
						
							| 39 | 36 37 38 | 3anbi123i |  | 
						
							| 40 | 34 35 | isclwwlk |  | 
						
							| 41 | 33 39 40 | 3imtr4i |  |