Metamath Proof Explorer


Theorem clwwlknonccat

Description: The concatenation of two words representing closed walks on a vertex X represents a closed walk on vertex X . The resulting walk is a "double loop", starting at vertex X , coming back to X by the first walk, following the second walk and finally coming back to X again. (Contributed by AV, 24-Apr-2022)

Ref Expression
Assertion clwwlknonccat AXClWWalksNOnGMBXClWWalksNOnGNA++BXClWWalksNOnGM+N

Proof

Step Hyp Ref Expression
1 simpl AMClWWalksNGA0=XAMClWWalksNG
2 1 adantr AMClWWalksNGA0=XBNClWWalksNGB0=XAMClWWalksNG
3 simpl BNClWWalksNGB0=XBNClWWalksNG
4 3 adantl AMClWWalksNGA0=XBNClWWalksNGB0=XBNClWWalksNG
5 simpr AMClWWalksNGA0=XA0=X
6 5 adantr AMClWWalksNGA0=XBNClWWalksNGB0=XA0=X
7 simpr BNClWWalksNGB0=XB0=X
8 7 eqcomd BNClWWalksNGB0=XX=B0
9 8 adantl AMClWWalksNGA0=XBNClWWalksNGB0=XX=B0
10 6 9 eqtrd AMClWWalksNGA0=XBNClWWalksNGB0=XA0=B0
11 clwwlknccat AMClWWalksNGBNClWWalksNGA0=B0A++BM+NClWWalksNG
12 2 4 10 11 syl3anc AMClWWalksNGA0=XBNClWWalksNGB0=XA++BM+NClWWalksNG
13 eqid VtxG=VtxG
14 13 clwwlknwrd AMClWWalksNGAWordVtxG
15 14 adantr AMClWWalksNGA0=XAWordVtxG
16 15 adantr AMClWWalksNGA0=XBNClWWalksNGB0=XAWordVtxG
17 13 clwwlknwrd BNClWWalksNGBWordVtxG
18 17 adantr BNClWWalksNGB0=XBWordVtxG
19 18 adantl AMClWWalksNGA0=XBNClWWalksNGB0=XBWordVtxG
20 clwwlknnn AMClWWalksNGM
21 clwwlknlen AMClWWalksNGA=M
22 nngt0 M0<M
23 breq2 A=M0<A0<M
24 22 23 syl5ibrcom MA=M0<A
25 20 21 24 sylc AMClWWalksNG0<A
26 25 adantr AMClWWalksNGA0=X0<A
27 26 adantr AMClWWalksNGA0=XBNClWWalksNGB0=X0<A
28 ccatfv0 AWordVtxGBWordVtxG0<AA++B0=A0
29 16 19 27 28 syl3anc AMClWWalksNGA0=XBNClWWalksNGB0=XA++B0=A0
30 29 6 eqtrd AMClWWalksNGA0=XBNClWWalksNGB0=XA++B0=X
31 12 30 jca AMClWWalksNGA0=XBNClWWalksNGB0=XA++BM+NClWWalksNGA++B0=X
32 isclwwlknon AXClWWalksNOnGMAMClWWalksNGA0=X
33 isclwwlknon BXClWWalksNOnGNBNClWWalksNGB0=X
34 32 33 anbi12i AXClWWalksNOnGMBXClWWalksNOnGNAMClWWalksNGA0=XBNClWWalksNGB0=X
35 isclwwlknon A++BXClWWalksNOnGM+NA++BM+NClWWalksNGA++B0=X
36 31 34 35 3imtr4i AXClWWalksNOnGMBXClWWalksNOnGNA++BXClWWalksNOnGM+N