| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
1
|
adantr |
|
| 3 |
|
simpl |
|
| 4 |
3
|
adantl |
|
| 5 |
|
simpr |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
7
|
eqcomd |
|
| 9 |
8
|
adantl |
|
| 10 |
6 9
|
eqtrd |
|
| 11 |
|
clwwlknccat |
|
| 12 |
2 4 10 11
|
syl3anc |
|
| 13 |
|
eqid |
|
| 14 |
13
|
clwwlknwrd |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
adantr |
|
| 17 |
13
|
clwwlknwrd |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
adantl |
|
| 20 |
|
clwwlknnn |
|
| 21 |
|
clwwlknlen |
|
| 22 |
|
nngt0 |
|
| 23 |
|
breq2 |
|
| 24 |
22 23
|
syl5ibrcom |
|
| 25 |
20 21 24
|
sylc |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
adantr |
|
| 28 |
|
ccatfv0 |
|
| 29 |
16 19 27 28
|
syl3anc |
|
| 30 |
29 6
|
eqtrd |
|
| 31 |
12 30
|
jca |
|
| 32 |
|
isclwwlknon |
|
| 33 |
|
isclwwlknon |
|
| 34 |
32 33
|
anbi12i |
|
| 35 |
|
isclwwlknon |
|
| 36 |
31 34 35
|
3imtr4i |
|