Metamath Proof Explorer
Description: Lemma 1 for clwwlknonex2 : Transformation of a special half-open
integer range into a union of a smaller half-open integer range and an
unordered pair. This Lemma would not hold for N = 2 , i.e.,
( #W ) = 0 , because ( 0 ..^ ( ( ( #W ) + 2 ) - 1 ) )
= ( 0 ..^ ( ( 0 + 2 ) - 1 ) ) = ( 0 ..^ 1 ) = { 0 }
=/= { -u 1 , 0 } = ( (/) u. { -u 1 , 0 } )
= ( ( 0 ..^ ( 0 - 1 ) ) u. { ( 0 - 1 ) , 0 } )
= ( ( 0 ..^ ( ( #W ) - 1 ) )
u. { ( ( #W ) - 1 ) , ( #W ) } ) . (Contributed by AV, 22-Sep-2018) (Revised by AV, 26-Jan-2022)