Metamath Proof Explorer


Theorem clwwlknun

Description: The set of closed walks of fixed length N in a simple graph G is the union of the closed walks of the fixed length N on each of the vertices of graph G . (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 28-May-2021) (Revised by AV, 3-Mar-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Hypothesis clwwlknun.v V=VtxG
Assertion clwwlknun GUSGraphNClWWalksNG=xVxClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 clwwlknun.v V=VtxG
2 eliun yxVxClWWalksNOnGNxVyxClWWalksNOnGN
3 isclwwlknon yxClWWalksNOnGNyNClWWalksNGy0=x
4 3 rexbii xVyxClWWalksNOnGNxVyNClWWalksNGy0=x
5 simpl yNClWWalksNGy0=xyNClWWalksNG
6 5 rexlimivw xVyNClWWalksNGy0=xyNClWWalksNG
7 eqid EdgG=EdgG
8 1 7 clwwlknp yNClWWalksNGyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgG
9 8 anim2i GUSGraphyNClWWalksNGGUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgG
10 7 1 usgrpredgv GUSGraphlastSyy0EdgGlastSyVy0V
11 10 ex GUSGraphlastSyy0EdgGlastSyVy0V
12 simpr lastSyVy0Vy0V
13 11 12 syl6com lastSyy0EdgGGUSGraphy0V
14 13 3ad2ant3 yWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGGUSGraphy0V
15 14 impcom GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGy0V
16 simpr GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGx=y0x=y0
17 16 eqcomd GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGx=y0y0=x
18 17 biantrud GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGx=y0yNClWWalksNGyNClWWalksNGy0=x
19 18 bicomd GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGx=y0yNClWWalksNGy0=xyNClWWalksNG
20 15 19 rspcedv GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGyNClWWalksNGxVyNClWWalksNGy0=x
21 20 adantld GUSGraphyWordVy=Ni0..^N1yiyi+1EdgGlastSyy0EdgGGUSGraphyNClWWalksNGxVyNClWWalksNGy0=x
22 9 21 mpcom GUSGraphyNClWWalksNGxVyNClWWalksNGy0=x
23 22 ex GUSGraphyNClWWalksNGxVyNClWWalksNGy0=x
24 6 23 impbid2 GUSGraphxVyNClWWalksNGy0=xyNClWWalksNG
25 4 24 bitrid GUSGraphxVyxClWWalksNOnGNyNClWWalksNG
26 2 25 bitr2id GUSGraphyNClWWalksNGyxVxClWWalksNOnGN
27 26 eqrdv GUSGraphNClWWalksNG=xVxClWWalksNOnGN