Description: The set of closed walks of fixed length N in a simple graph G is the union of the closed walks of the fixed length N on each of the vertices of graph G . (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 28-May-2021) (Revised by AV, 3-Mar-2022) (Proof shortened by AV, 28-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwwlknun.v | |
|
Assertion | clwwlknun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknun.v | |
|
2 | eliun | |
|
3 | isclwwlknon | |
|
4 | 3 | rexbii | |
5 | simpl | |
|
6 | 5 | rexlimivw | |
7 | eqid | |
|
8 | 1 7 | clwwlknp | |
9 | 8 | anim2i | |
10 | 7 1 | usgrpredgv | |
11 | 10 | ex | |
12 | simpr | |
|
13 | 11 12 | syl6com | |
14 | 13 | 3ad2ant3 | |
15 | 14 | impcom | |
16 | simpr | |
|
17 | 16 | eqcomd | |
18 | 17 | biantrud | |
19 | 18 | bicomd | |
20 | 15 19 | rspcedv | |
21 | 20 | adantld | |
22 | 9 21 | mpcom | |
23 | 22 | ex | |
24 | 6 23 | impbid2 | |
25 | 4 24 | bitrid | |
26 | 2 25 | bitr2id | |
27 | 26 | eqrdv | |