Metamath Proof Explorer


Theorem clwwnonrepclwwnon

Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn . (Contributed by AV, 24-Apr-2022) (Revised by AV, 10-May-2022) (Revised by AV, 30-Oct-2022)

Ref Expression
Assertion clwwnonrepclwwnon N 3 W X ClWWalksNOn G N W N 2 = X W prefix N 2 X ClWWalksNOn G N 2

Proof

Step Hyp Ref Expression
1 simp1 N 3 W X ClWWalksNOn G N W N 2 = X N 3
2 isclwwlknon W X ClWWalksNOn G N W N ClWWalksN G W 0 = X
3 2 simplbi W X ClWWalksNOn G N W N ClWWalksN G
4 3 3ad2ant2 N 3 W X ClWWalksNOn G N W N 2 = X W N ClWWalksN G
5 simpr W N ClWWalksN G W 0 = X W 0 = X
6 5 eqcomd W N ClWWalksN G W 0 = X X = W 0
7 2 6 sylbi W X ClWWalksNOn G N X = W 0
8 7 eqeq2d W X ClWWalksNOn G N W N 2 = X W N 2 = W 0
9 8 biimpa W X ClWWalksNOn G N W N 2 = X W N 2 = W 0
10 9 3adant1 N 3 W X ClWWalksNOn G N W N 2 = X W N 2 = W 0
11 clwwnrepclwwn N 3 W N ClWWalksN G W N 2 = W 0 W prefix N 2 N 2 ClWWalksN G
12 1 4 10 11 syl3anc N 3 W X ClWWalksNOn G N W N 2 = X W prefix N 2 N 2 ClWWalksN G
13 2clwwlklem W N ClWWalksN G N 3 W prefix N 2 0 = W 0
14 3 13 sylan W X ClWWalksNOn G N N 3 W prefix N 2 0 = W 0
15 14 ancoms N 3 W X ClWWalksNOn G N W prefix N 2 0 = W 0
16 15 3adant3 N 3 W X ClWWalksNOn G N W N 2 = X W prefix N 2 0 = W 0
17 2 simprbi W X ClWWalksNOn G N W 0 = X
18 17 3ad2ant2 N 3 W X ClWWalksNOn G N W N 2 = X W 0 = X
19 16 18 eqtrd N 3 W X ClWWalksNOn G N W N 2 = X W prefix N 2 0 = X
20 isclwwlknon W prefix N 2 X ClWWalksNOn G N 2 W prefix N 2 N 2 ClWWalksN G W prefix N 2 0 = X
21 12 19 20 sylanbrc N 3 W X ClWWalksNOn G N W N 2 = X W prefix N 2 X ClWWalksNOn G N 2