Metamath Proof Explorer


Theorem cmpidelt

Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cmpidelt.1 X=ranG
cmpidelt.2 U=GIdG
Assertion cmpidelt GMagmaExIdAXUGA=AAGU=A

Proof

Step Hyp Ref Expression
1 cmpidelt.1 X=ranG
2 cmpidelt.2 U=GIdG
3 1 2 idrval GMagmaExIdU=ιuX|xXuGx=xxGu=x
4 3 eqcomd GMagmaExIdιuX|xXuGx=xxGu=x=U
5 1 2 iorlid GMagmaExIdUX
6 1 exidu1 GMagmaExId∃!uXxXuGx=xxGu=x
7 oveq1 u=UuGx=UGx
8 7 eqeq1d u=UuGx=xUGx=x
9 8 ovanraleqv u=UxXuGx=xxGu=xxXUGx=xxGU=x
10 9 riota2 UX∃!uXxXuGx=xxGu=xxXUGx=xxGU=xιuX|xXuGx=xxGu=x=U
11 5 6 10 syl2anc GMagmaExIdxXUGx=xxGU=xιuX|xXuGx=xxGu=x=U
12 4 11 mpbird GMagmaExIdxXUGx=xxGU=x
13 oveq2 x=AUGx=UGA
14 id x=Ax=A
15 13 14 eqeq12d x=AUGx=xUGA=A
16 oveq1 x=AxGU=AGU
17 16 14 eqeq12d x=AxGU=xAGU=A
18 15 17 anbi12d x=AUGx=xxGU=xUGA=AAGU=A
19 18 rspccva xXUGx=xxGU=xAXUGA=AAGU=A
20 12 19 sylan GMagmaExIdAXUGA=AAGU=A