Metamath Proof Explorer


Theorem cndprobval

Description: The value of the conditional probability , i.e. the probability for the event A , given B , under the probability law P . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobval PProbAdomPBdomPcProbPAB=PABPB

Proof

Step Hyp Ref Expression
1 df-ov AcProbPB=cProbPAB
2 df-cndprob cProb=pProbadomp,bdomppabpb
3 dmeq p=Pdomp=domP
4 fveq1 p=Ppab=Pab
5 fveq1 p=Ppb=Pb
6 4 5 oveq12d p=Ppabpb=PabPb
7 3 3 6 mpoeq123dv p=Padomp,bdomppabpb=adomP,bdomPPabPb
8 id PProbPProb
9 dmexg PProbdomPV
10 mpoexga domPVdomPVadomP,bdomPPabPbV
11 9 9 10 syl2anc PProbadomP,bdomPPabPbV
12 2 7 8 11 fvmptd3 PProbcProbP=adomP,bdomPPabPb
13 12 3ad2ant1 PProbAdomPBdomPcProbP=adomP,bdomPPabPb
14 simprl PProbAdomPBdomPa=Ab=Ba=A
15 simprr PProbAdomPBdomPa=Ab=Bb=B
16 14 15 ineq12d PProbAdomPBdomPa=Ab=Bab=AB
17 16 fveq2d PProbAdomPBdomPa=Ab=BPab=PAB
18 15 fveq2d PProbAdomPBdomPa=Ab=BPb=PB
19 17 18 oveq12d PProbAdomPBdomPa=Ab=BPabPb=PABPB
20 simp2 PProbAdomPBdomPAdomP
21 simp3 PProbAdomPBdomPBdomP
22 ovexd PProbAdomPBdomPPABPBV
23 13 19 20 21 22 ovmpod PProbAdomPBdomPAcProbPB=PABPB
24 1 23 eqtr3id PProbAdomPBdomPcProbPAB=PABPB