Metamath Proof Explorer


Theorem cnmet

Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006)

Ref Expression
Assertion cnmet absMet

Proof

Step Hyp Ref Expression
1 cnex V
2 absf abs:
3 subf :×
4 fco abs::×abs:×
5 2 3 4 mp2an abs:×
6 subcl xyxy
7 6 abs00ad xyxy=0xy=0
8 eqid abs=abs
9 8 cnmetdval xyxabsy=xy
10 9 eqcomd xyxy=xabsy
11 10 eqeq1d xyxy=0xabsy=0
12 subeq0 xyxy=0x=y
13 7 11 12 3bitr3d xyxabsy=0x=y
14 abs3dif xyzxyxz+zy
15 abssub xzxz=zx
16 15 oveq1d xzxz+zy=zx+zy
17 16 3adant2 xyzxz+zy=zx+zy
18 14 17 breqtrd xyzxyzx+zy
19 9 3adant3 xyzxabsy=xy
20 8 cnmetdval zxzabsx=zx
21 20 3adant3 zxyzabsx=zx
22 8 cnmetdval zyzabsy=zy
23 22 3adant2 zxyzabsy=zy
24 21 23 oveq12d zxyzabsx+zabsy=zx+zy
25 24 3coml xyzzabsx+zabsy=zx+zy
26 18 19 25 3brtr4d xyzxabsyzabsx+zabsy
27 1 5 13 26 ismeti absMet