Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | cnmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex | |
|
2 | absf | |
|
3 | subf | |
|
4 | fco | |
|
5 | 2 3 4 | mp2an | |
6 | subcl | |
|
7 | 6 | abs00ad | |
8 | eqid | |
|
9 | 8 | cnmetdval | |
10 | 9 | eqcomd | |
11 | 10 | eqeq1d | |
12 | subeq0 | |
|
13 | 7 11 12 | 3bitr3d | |
14 | abs3dif | |
|
15 | abssub | |
|
16 | 15 | oveq1d | |
17 | 16 | 3adant2 | |
18 | 14 17 | breqtrd | |
19 | 9 | 3adant3 | |
20 | 8 | cnmetdval | |
21 | 20 | 3adant3 | |
22 | 8 | cnmetdval | |
23 | 22 | 3adant2 | |
24 | 21 23 | oveq12d | |
25 | 24 | 3coml | |
26 | 18 19 25 | 3brtr4d | |
27 | 1 5 13 26 | ismeti | |