Metamath Proof Explorer


Theorem cnmpt1ds

Description: Continuity of the metric function; analogue of cnmpt12f which cannot be used directly because D is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses cnmpt1ds.d D=distG
cnmpt1ds.j J=TopOpenG
cnmpt1ds.r R=topGenran.
cnmpt1ds.g φGMetSp
cnmpt1ds.k φKTopOnX
cnmpt1ds.a φxXAKCnJ
cnmpt1ds.b φxXBKCnJ
Assertion cnmpt1ds φxXADBKCnR

Proof

Step Hyp Ref Expression
1 cnmpt1ds.d D=distG
2 cnmpt1ds.j J=TopOpenG
3 cnmpt1ds.r R=topGenran.
4 cnmpt1ds.g φGMetSp
5 cnmpt1ds.k φKTopOnX
6 cnmpt1ds.a φxXAKCnJ
7 cnmpt1ds.b φxXBKCnJ
8 mstps GMetSpGTopSp
9 4 8 syl φGTopSp
10 eqid BaseG=BaseG
11 10 2 istps GTopSpJTopOnBaseG
12 9 11 sylib φJTopOnBaseG
13 cnf2 KTopOnXJTopOnBaseGxXAKCnJxXA:XBaseG
14 5 12 6 13 syl3anc φxXA:XBaseG
15 14 fvmptelcdm φxXABaseG
16 cnf2 KTopOnXJTopOnBaseGxXBKCnJxXB:XBaseG
17 5 12 7 16 syl3anc φxXB:XBaseG
18 17 fvmptelcdm φxXBBaseG
19 15 18 ovresd φxXADBaseG×BaseGB=ADB
20 19 mpteq2dva φxXADBaseG×BaseGB=xXADB
21 10 1 2 3 msdcn GMetSpDBaseG×BaseGJ×tJCnR
22 4 21 syl φDBaseG×BaseGJ×tJCnR
23 5 6 7 22 cnmpt12f φxXADBaseG×BaseGBKCnR
24 20 23 eqeltrrd φxXADBKCnR