Metamath Proof Explorer


Theorem cnmpt22f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φJTopOnX
cnmpt21.k φKTopOnY
cnmpt21.a φxX,yYAJ×tKCnL
cnmpt2t.b φxX,yYBJ×tKCnM
cnmpt22f.f φFL×tMCnN
Assertion cnmpt22f φxX,yYAFBJ×tKCnN

Proof

Step Hyp Ref Expression
1 cnmpt21.j φJTopOnX
2 cnmpt21.k φKTopOnY
3 cnmpt21.a φxX,yYAJ×tKCnL
4 cnmpt2t.b φxX,yYBJ×tKCnM
5 cnmpt22f.f φFL×tMCnN
6 cntop2 xX,yYAJ×tKCnLLTop
7 3 6 syl φLTop
8 toptopon2 LTopLTopOnL
9 7 8 sylib φLTopOnL
10 cntop2 xX,yYBJ×tKCnMMTop
11 4 10 syl φMTop
12 toptopon2 MTopMTopOnM
13 11 12 sylib φMTopOnM
14 txtopon LTopOnLMTopOnML×tMTopOnL×M
15 9 13 14 syl2anc φL×tMTopOnL×M
16 cntop2 FL×tMCnNNTop
17 5 16 syl φNTop
18 toptopon2 NTopNTopOnN
19 17 18 sylib φNTopOnN
20 cnf2 L×tMTopOnL×MNTopOnNFL×tMCnNF:L×MN
21 15 19 5 20 syl3anc φF:L×MN
22 21 ffnd φFFnL×M
23 fnov FFnL×MF=zL,wMzFw
24 22 23 sylib φF=zL,wMzFw
25 24 5 eqeltrrd φzL,wMzFwL×tMCnN
26 oveq12 z=Aw=BzFw=AFB
27 1 2 3 4 9 13 25 26 cnmpt22 φxX,yYAFBJ×tKCnN