Metamath Proof Explorer


Theorem cnndvlem2

Description: Lemma for cnndv . (Contributed by Asger C. Ipsen, 26-Aug-2021)

Ref Expression
Hypotheses cnndvlem2.t T=xx+12x
cnndvlem2.f F=yn012nT23ny
cnndvlem2.w W=wi0Fwi
Assertion cnndvlem2 ff:cndomf=

Proof

Step Hyp Ref Expression
1 cnndvlem2.t T=xx+12x
2 cnndvlem2.f F=yn012nT23ny
3 cnndvlem2.w W=wi0Fwi
4 1 2 3 cnndvlem1 W:cndomW=
5 reex V
6 5 mptex wi0FwiV
7 3 6 eqeltri WV
8 eleq1 f=Wf:cnW:cn
9 oveq2 f=WDf=DW
10 9 dmeqd f=Wdomf=domW
11 10 eqeq1d f=Wdomf=domW=
12 8 11 anbi12d f=Wf:cndomf=W:cndomW=
13 7 12 spcev W:cndomW=ff:cndomf=
14 4 13 ax-mp ff:cndomf=