Metamath Proof Explorer


Theorem cnngp

Description: The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion cnngp fldNrmGrp

Proof

Step Hyp Ref Expression
1 cnring fldRing
2 ringgrp fldRingfldGrp
3 1 2 ax-mp fldGrp
4 cnfldms fldMetSp
5 ssid absabs
6 cnfldnm abs=normfld
7 cnfldsub =-fld
8 cnfldds abs=distfld
9 6 7 8 isngp fldNrmGrpfldGrpfldMetSpabsabs
10 3 4 5 9 mpbir3an fldNrmGrp