Metamath Proof Explorer


Theorem cnntri

Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis cncls2i.1 Y=K
Assertion cnntri FJCnKSYF-1intKSintJF-1S

Proof

Step Hyp Ref Expression
1 cncls2i.1 Y=K
2 cntop1 FJCnKJTop
3 2 adantr FJCnKSYJTop
4 cnvimass F-1SdomF
5 eqid J=J
6 5 1 cnf FJCnKF:JY
7 6 fdmd FJCnKdomF=J
8 7 adantr FJCnKSYdomF=J
9 4 8 sseqtrid FJCnKSYF-1SJ
10 cntop2 FJCnKKTop
11 1 ntropn KTopSYintKSK
12 10 11 sylan FJCnKSYintKSK
13 cnima FJCnKintKSKF-1intKSJ
14 12 13 syldan FJCnKSYF-1intKSJ
15 1 ntrss2 KTopSYintKSS
16 10 15 sylan FJCnKSYintKSS
17 imass2 intKSSF-1intKSF-1S
18 16 17 syl FJCnKSYF-1intKSF-1S
19 5 ssntr JTopF-1SJF-1intKSJF-1intKSF-1SF-1intKSintJF-1S
20 3 9 14 18 19 syl22anc FJCnKSYF-1intKSintJF-1S