Metamath Proof Explorer


Theorem cnrest2r

Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion cnrest2r KTopJCnK𝑡BJCnK

Proof

Step Hyp Ref Expression
1 simpr KTopfJCnK𝑡BfJCnK𝑡B
2 cntop2 fJCnK𝑡BK𝑡BTop
3 2 adantl KTopfJCnK𝑡BK𝑡BTop
4 restrcl K𝑡BTopKVBV
5 eqid K=K
6 5 restin KVBVK𝑡B=K𝑡BK
7 3 4 6 3syl KTopfJCnK𝑡BK𝑡B=K𝑡BK
8 7 oveq2d KTopfJCnK𝑡BJCnK𝑡B=JCnK𝑡BK
9 1 8 eleqtrd KTopfJCnK𝑡BfJCnK𝑡BK
10 simpl KTopfJCnK𝑡BKTop
11 toptopon2 KTopKTopOnK
12 10 11 sylib KTopfJCnK𝑡BKTopOnK
13 cntop1 fJCnK𝑡BJTop
14 13 adantl KTopfJCnK𝑡BJTop
15 toptopon2 JTopJTopOnJ
16 14 15 sylib KTopfJCnK𝑡BJTopOnJ
17 inss2 BKK
18 resttopon KTopOnKBKKK𝑡BKTopOnBK
19 12 17 18 sylancl KTopfJCnK𝑡BK𝑡BKTopOnBK
20 cnf2 JTopOnJK𝑡BKTopOnBKfJCnK𝑡BKf:JBK
21 16 19 9 20 syl3anc KTopfJCnK𝑡Bf:JBK
22 21 frnd KTopfJCnK𝑡BranfBK
23 17 a1i KTopfJCnK𝑡BBKK
24 cnrest2 KTopOnKranfBKBKKfJCnKfJCnK𝑡BK
25 12 22 23 24 syl3anc KTopfJCnK𝑡BfJCnKfJCnK𝑡BK
26 9 25 mpbird KTopfJCnK𝑡BfJCnK
27 26 ex KTopfJCnK𝑡BfJCnK
28 27 ssrdv KTopJCnK𝑡BJCnK