Metamath Proof Explorer


Theorem cntmeas

Description: The Counting measure is a measure on any sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion cntmeas S ran sigAlgebra . S measures S

Proof

Step Hyp Ref Expression
1 hashf2 . : V 0 +∞
2 ssv S V
3 fssres . : V 0 +∞ S V . S : S 0 +∞
4 1 2 3 mp2an . S : S 0 +∞
5 4 a1i S ran sigAlgebra . S : S 0 +∞
6 0elsiga S ran sigAlgebra S
7 fvres S . S =
8 6 7 syl S ran sigAlgebra . S =
9 hash0 = 0
10 8 9 eqtrdi S ran sigAlgebra . S = 0
11 vex x V
12 hasheuni x V Disj y x y x = * y x y
13 11 12 mpan Disj y x y x = * y x y
14 13 ad2antll S ran sigAlgebra x 𝒫 S x ω Disj y x y x = * y x y
15 isrnsigau S ran sigAlgebra S 𝒫 S S S x S S x S x 𝒫 S x ω x S
16 15 simprd S ran sigAlgebra S S x S S x S x 𝒫 S x ω x S
17 16 simp3d S ran sigAlgebra x 𝒫 S x ω x S
18 fvres x S . S x = x
19 18 imim2i x ω x S x ω . S x = x
20 19 ralimi x 𝒫 S x ω x S x 𝒫 S x ω . S x = x
21 17 20 syl S ran sigAlgebra x 𝒫 S x ω . S x = x
22 21 r19.21bi S ran sigAlgebra x 𝒫 S x ω . S x = x
23 22 imp S ran sigAlgebra x 𝒫 S x ω . S x = x
24 23 adantrr S ran sigAlgebra x 𝒫 S x ω Disj y x y . S x = x
25 elpwi x 𝒫 S x S
26 25 sseld x 𝒫 S y x y S
27 fvres y S . S y = y
28 26 27 syl6 x 𝒫 S y x . S y = y
29 28 imp x 𝒫 S y x . S y = y
30 29 esumeq2dv x 𝒫 S * y x . S y = * y x y
31 30 ad2antlr S ran sigAlgebra x 𝒫 S x ω Disj y x y * y x . S y = * y x y
32 14 24 31 3eqtr4d S ran sigAlgebra x 𝒫 S x ω Disj y x y . S x = * y x . S y
33 32 ex S ran sigAlgebra x 𝒫 S x ω Disj y x y . S x = * y x . S y
34 33 ralrimiva S ran sigAlgebra x 𝒫 S x ω Disj y x y . S x = * y x . S y
35 ismeas S ran sigAlgebra . S measures S . S : S 0 +∞ . S = 0 x 𝒫 S x ω Disj y x y . S x = * y x . S y
36 5 10 34 35 mpbir3and S ran sigAlgebra . S measures S